FSMs - Design Considerations and VHDL Modeling
for use with RTL level Synthesis

Douglas J. Smith
Intergraph Corporation
One Madison Industrial Estate, Huntsville, AL 35894-0001, USA

e-mail: djsmith@ingr.com

Abstract

The different issues to consider when designing
and modeling Finite State Machines (FSMs) in
VHDL for use with RTL level synthesis are
shown. The issues covered are: coding style,
resets and fail safe behavior, state encoding,
Mealy or Moore type outputs, additional
sequential next state or output logic, and
interactive FSMs. VHDL models are included.

1 Introduction

Designers of digital circuits are invariably faced
with needing to design circuits that perform
specific sequences of operations, e.g. controllers
used to control the operation of other circuits.
Finite State Machines (FSMs) have proven to
be a very efficient means of modeling sequencer
circuits. By modeling FSMs in VHDL for use
with synthesis tools, designers can concentrate
on modeling the desired sequences of
operations without being overly concerned with
circuit implementation; this is left to the
synthesis tool. FSMs are an important part of
hardware design and hence VHDL hardware
modeling.

A designer should consider the different aspects
of an FSM before attempting to write a model.
A well written model is essential for a
functionally correct circuit that meets your
requirements in the most optimal manner. A
badly written model may not meet either
criteria. For this reason, it is important to fully
understand FSMs and to be familiar with the
different VHDL modeling issues.

2 Definitions

2.1 The FSM

A FSM is any circuit specifically designed to
sequence through specific patterns of states
in a sequential manner, and which conforms
to the structure shown in Figure 1. A state is
represented by the binary value held on the
current state register. The FSM structure
consists of three parts and may, or may not,
be reflected in the structure of the VHDL code
that is used to model it.

4‘ Next State Logic Cument Stas h
{combinational) " R-on:‘
ﬁ Choct g (mequantal)

Figure 1. Basic structure of a Finite State
Machine

Logc
oo " Outputs

1. Current State Register: Register of n-bit flip-
flops used to hold the current state of the FSM.
Its value represents the current stage in the
particular sequence of operations being
performed. When operating, it is always clocked
from a free running clock source.

2. Next State Logic: Combinational logic used
to generate the next stage (state) in the
sequence. The next state output is a function
of the FSM's inputs and it's current state.

3. Output Logic: Combinational logic used to
generate required output signals. Outputs are
a function of the state register output and
possibly FSM inputs.

2.2 State Diagrams and State Tables

A state diagram is a graphical representation
of an FSM's sequential operation. State
diagrams are often supported as a direct input
to Electronic Design Automation (EDA) tools
from which synthesized circuits and VHDL
simulation models are generated. Figure 2
shows two state diagram representations of the
same five state, state machine; the equivalent
state table is shown in Table 1.

Inputs Current state Next state Outputs
A [Hold Y_Me | Y_Mo
0 X 000 (STO) 000 (5T0) 1 0
i X 000 (ST0) 00 (ST1) 0 0
0| X 001 (ST1) 000 (ST0) 0 1
1 X 001 {sT1) 010 {ST2) 1 1
X X 010 (5T2) on {(ST3) 0 0
X1 1 on {ST3) on (5T3) 1 1
0} 0 on (573) 000 (STO) 1 1
1 0 on (ST3) 100 (ST4) 0 1
X[X 100 (ST4) 000 (STO) 0 1

X = don’t care condition
Table 1. State table for state diagrams of Figure 1

X1
Value of input;
A and Hold
XX/Q

Value of Mealy
type output Y_Me

Vaiue of Moore
type ’ Mo

Nomerclature
Transitional A Hold/Y_Me
State Y_Mo

X - don't care condition

Separator betwsen inputs and

Mealy type outputs Binary value on three

state register flip-tlops

Mealy type oulput
Y-Mo Y_Me shown only
Inputs shown only
when needed to

clanfy branch @
conditions. DOMN
is the boolean

D. A.Hold

AN

when active

Moore type output
Y_Mo shown only
when active

Transition from ST3 to
STO when A and Hoid
not active. Expiicitly defined

State associaled names fo avoid ambiguity

Figure 2. Two equivalent state diagrams

The description of the two state diagrams of
Figure 2 now follows.

Circles represent states and arrowed lines
represent transitions between states which
occur after every clock cycle. The clock signal
is implied, but not shown on a state diagram,
nor in a state table.

The binary number representing the value on
the state register flip-flops (first state diagram),
or it's associated state name (second state
diagram) is contained inside the circle. The
input signal conditions that dictate state
transitions, are indicated next to the
appropriate line and before any slash (/). A
slash is used to separate input and output
signals. The two inputs, A and Hold, are shown
before the slash. Values shown after the slash,
if any, indicate output signal values that are a
function of both the inputs and current state
register; these are Mealy type outputs
described later. The value of output signals that
are a function of the current state register only,
are shown next to the circle representing the
appropriate state. These are Moore type
outputs, also described later. The major
difference of the second state diagram, is that
input and output signals are shown only when
they are active, otherwise they are left off to
aid functional comprehension, and avoid
cluttering the diagram:.

3 Design and Modeling Issues

FSM design and modeling issues to consider

are:

1.VHDL coding style,

2.resets and fail safe behavior,

3.state encoding,

4.Mealy or Moore type outputs,

5.additional sequential next state & output
logic,

6.Interactive FSMs.

The structure of a state machine can take one
of three forms, depending upon the type of
output see Figure 3. The current state is stored
using flip-flops; latches would cause state
oscillations when transparent. The next state
and output logic blocks may contain additional
sequential logic, inferred from within the body
of the VHDL model, but is not considered part

of the state machine. A state machine can only
be in one state at any given time, and each
active transition of the clock causes it to change
from its current state to the next as defined by
the next state logic.

A state machine with "n" state flip-flops has 2"
possible binary numbers that can be used to
represent states. Often, not all 2" numbers are
needed, so the unused ones should be designed
not to occur during normal operation. A state
machine with five states, for example, requires
a minimum of 3 flip-flops in which case there
are 23-5 = 3 unused binary numbers.

IE-L Noxt St Logc ol L (omrasoran

Curront Staw Mealy
Glock (soqoornal) Outpus
—
Synchronous I Asynchronous
st _ __o e =
Mealy
Inputs
—- L Cutrent Stats Ouak Logic
ot o s IS T g Y
Oultputs
srmron ¥ ¥
.t __ 4 el _
Moore
|
Output Logc > Moaly
Inputs Curent Staw —
Noxt e Logic Fogeter
(combraonal) [Ciack (eaeroey)
4 ‘ e (iembonn) [re—
Lo _ _ ot _ More
Outputs.
Mealy / Moore

Figure 3. FSM Structures

3.1 VHDL coding style

There are different ways of modeling the same
state machine, on the other hand, a small code
change can cause a model to behave differently
than expected. Designers should be aware of
the different modeling styles supported by the
synthesis tool being used, and should consider
modeling FSMs to be tool independent; this
applies to the model of any circuit. VHDL code
may be structured into three separate parts
representing the three parts of a state machine,
as shown in Figure 1. Alternatively, different
combinations of the three parts can be
combined within the code. Either way the
chosen coding style is independent of the state
machine being modeled.

2.

3.2 Resets and fail safe behavior

Depending upon the application; a reset signal
may not be available, there may only be a
synchronous or asynchronous reset, or there
may be both. To guarantee fail safe behavior,
one of two things must be done, depending on
the type of reset:

1. Use an asynchronous reset: This ensures the
state machine is always initialized to a known
valid state, before the first active clock
transition and normal operation commences.
This has the advantage of not needing to decode
any unused current state register values, and
so minimizes the next state logic.

2. With no reset or a synchronous reset: In the

absence of an asynchronous reset there is no
way of predicting the initial value of the state
register flip-flops when implemented in an IC
and "powered up". It could power up and
become permanently stuck in an uncoded
state. All 2" binary values must therefore be
decoded in the next state logic, whether they
form part of the state machine or not. There is
generally only a small area overhead in the next
state logic in doing this, and is partially offset
by using smaller flip-flops that do not have an
asynchronous reset input.

3.3 State Encoding

The way in which binary numbers are assigned
to states, is called the state encoding. The
different state encoding formats are:

sequential,

gray,

Johnson,

one-hot,

define your own,

defined by synthesis.

These are described below and the four
standard state encoding formats are shown in
Table 2 for 16 states.

Sequential: Each state is simply assigned
increasing binary numbers.

Gray and Johnson: Each state in both Gray
and Johnson state encoding, is assigned

3

No. Sequential | Gray Johnson One-Hot
0 0000 0000 00000000 0000000000000001
1 0001 0001 00000001 0000000000000010
2 0010 0011 00000011 0000000000000100
3 oon 0010 00000111 0000000000001000
4 0100 0110 00001111 0000000000010000
5 010! o 00011711 0000000000100000
é 0110 0101 [RERRRI 0000000001000000
7 ot 0100 [RRRARRI 0000000010000000
8 1000 1100 nm 0000000100000000
9 1001 1ol LARRARAIY) 0000001000000000
10 1010 1 11111100 0000010000000000
1 1011 1110 11111000 0000100000000000
12 1100 1010 11110000 0001000000000000
13 no1 10n 11100000 0010000000000000
14 1110 1001 11000000 0100000000000000
15 "y 1000 10000000 10000000000000G0

Table 2. Standard State Machine Encoding Formats

successive binary numbers where only one bit
changes from one number to the next. A
primary motive for using such coding, is to
reduce the possibility of state transition errors
caused by asynchronous inputs changing
during flip-flop setup times. This causes
metastable states, that may last as long as the
duty cycle of the clock. This occurs anywhere
asynchronous signals are synchronized.

All 2" binary numbers can be used when Gray
coded state encoding is used. However, because
of the pattern of 1's and O's in Johnson state
encoding, more flip-flops are required, and
there are always unused binary numbers. This
means that an asynchronous reset is preferred,
though not essential for reasons given in 3.2.

One-hot: In "one hot" state encoding, each state
is assigned its own flip-flop, so 'n' states
requires 'n' flip-flops and only one flip-flop is
init's true state at any one time. The increased
number of flip-flops and often increased next
state logic usually results in a larger overall
circuit.

Define your own: Each state is assigned a

binary number according to a particular design
requirement.

Defined by Synthesis: These formats are

chosen by the synthesis tool to minimize next
state logic and means the actual assignments
are design dependent

3.4 Mealy or Moore type Outputs

The structure of; a Mealy, a Moore, and a
combined Mealy/Moore state machine was

2.

shown in Figure 3. A Mealy state machine has
outputs that are a function of the current state,
and primary inputs. A Moore state machine
has outputs that are a function of the current
state only, and so includes outputs direct from
the state register. If all outputs come direct from
the state register, there is no output logic. A
combined Mealy/Moore state machine has both
types of output. The choice between using
Mealy or Moore type outputs are clearly
application dependent.

3.5 Sequential Next State or Output
Logic

Both the next state and output logic in a state
machine, consists of combinational logic only.
However, depending upon the application, you
may want to model additional sequential logic
in either of these blocks, and which may be
imbedded within the code of the state machine
model.

Sequential Next State Logic: Extra imbedded

sequential next state logic is used to control
state branching from previously set signals.
The output from this sequential logic can be
set when; the state machine was in another
state, it passed through a particular sequence
of states, or because of some accumulated
value resulting from looping around successive
sequences of states. These next state control
signals could also provide overall model
outputs.

Sequential Output Logic: Extra sequential
output logic is used to indicate the fact that a

certain state, or sequence of states has
occurred. Like the sequential next state signals,
outputs signals can be set when; the state
machine was in another state, it passed
through a particular sequence of states, or
because of some accumulated value resulting
from looping around successive sequences of
states.

3.6 Interactive FSMs

If a state machine's current state or output
signals are used to influence the operation of
other state machines, they are known to be
interactive. Interaction between state machines
may be unidirectional or bidirectional.

4

State machines may be hierarchically
structured, in which case, they are useful in
breaking down large complicated control path
structures into more manageable pieces. Figure
4 shows the structure of two state machines
where FSM1 has unidirectional control over
FSM2. The next state of FSM2 is dependent
upon it's own inputs and current state, plus
the current state of FSM1.

FSM1
For Mesly outputs
p———

= Noc St Logic c(“w"' S.‘:‘;' bl Oapus Logic Oupats
k
p~1 Ciock | (e

FSM2

| Ouipus Logee

Figure 4. Structure of two FSMs with
unidirectional interaction

State machines having bidirectional control
over each other are useful for modeling circuits
requiring handshaking mechanisms. Figure 5
shows the structure of three interactive state
machines where each state machine has
bidirectional control over the other two.

F or Mealy outputs

v

Current State ‘1 tput Logc
Loge Jor Tor FSM1
Clock g !
inputs

Next Stale Current State Outputs
Logcioran emmliiel (0T Core
thvee FSMs Clock, I3

Shockpy

Current State
Logic for
Clock g, ¥ J

Figure 5. Structure of three bidirectional
interactive FSMs

4 Coding FSMs in VHDL
4.1 VHDL coding styles

Next state logic is best modeled using the case
statement, though a "selected signal

2.

assignment” can also be used, but means the
FSM cannot be modeled in the same process.
The others clause must always be used in a
case statement for Language Reference Manual
(LRM) compliance, even though all branch
conditions may have already been explicitly
defined. This also avoids the need to explicitly
define all 2" register values that are not used
in the state machine.

Example 1. Four VHDL Models of the same FSM

A FSM whose state diagram is shown in Figure
6, is shown modeled in the following four ways:

FSM1A Separate CS, NS and OL
FSM1B Combined CS and NS. Separate OL
FSM1C Combined NS and OL. Separate CS
FSM1D Combined CS, NS and OL
where CS - Current State

NS - Next State

OL - Output Logic

Reset

Figure 6. State diagram
@ for FSM1A/B/C/D
Y=3

FSM1A Seperate CS, NS and OL

entity FSMIA is
port (Clock,Reset: in bit;
Control: in bit;
Y. out integer range 0 to 4);
end FSMI1A;

architecture RTL of FSM1A is
type StateType is (STO,ST1,572,8T3);
signal CurrentState. NextState: Statelype:
begin)
COMB: process (Control, CurrentState) |
begin i
case CurrentState is
when ST0 =>
NextState <= ST1;
when ST1 =>
it (CONTROL ='1") then
NextState <= ST2;
olse
NextState <= ST3;
end if;
when ST2 =>
NextState <= ST3;
when ST3 =>
NextState <= STO;
when others =>
NextState <= STO;
end case;
ond process;

-

next
state
logic

5

SEQ: process (Clock.Reset, NextState)
begin
if (Reset ='1") then
CurrentState <= STO;
elsif (Clock’event and Clock='1") then
CurrentState <= NextState;
end if:
end process;

cumrent
-—{ state
logic

-- Moore output logic
-- (Concurrent select signal assignment)
with CurrentState select
Y <= 1 when ST0,
2 when ST1,
3 when 572,
4 when ST3,
1 when others;

) 4 output
logic

end RTL;

FSM1B - Combined CS and NS. Separate OL

ontity FSM1B is
port (Clock, Reset:in bit;
Control: in bit;
Y: out integer range 0 to 4);
end FSMI1B;

architecture RTL of FSM1B is
type StateType is (ST0. ST1, ST2, ST3);
signal STATE: StateType;

begin
NEXT_CURR: process -
begin
if (Reset ="'1') then

STATE <= STO;
alsif (Clock event and Clock='1") then
case (STATE) is
when ST0 => current state

STATE <= ST1; __|ond
when ST1 => next state
if (Control = ‘1) then ¢ |logic
STATE <= §T2; ;
else
STATE <= ST3;
endif;
when ST2 =>
STATE <= ST3;
when ST3 =>
STATE <= STO;
when others =>
null;
end case; i
end if. i
end process;]

with STATE select
Y <= 1 when ST0,
2 when STI, output
3 when ST2, logic
4 when ST3,
1 when others;

end RTL;

FSM1C - Combined NS and OL. Separate CS

entity FSM1C is
port (ClockReset. in bit;
Control: in bit;
Y: out integer range O to 4);
end FSM1C;

architecture RTL of FSM1C is

type StateType is (ST0,ST1.5T2,ST3);

signal CurrentState, NextState: StateType;
begin

COMB: process (Control, CurrentState) w

begin
case CurrentState is

when STO =>
Ye=1;
NextState <= ST1;

when ST1 =>
Y <=2
if (CONTROL ='1") then

NextState <= ST2;

olse

next state

NextState <= ST3; _|and
ond if: output
when ST2 => . |logic
Y <= 3; :
NextState <= ST3; |
when ST3 =>]

Y <= 4;
NextState <= ST0;
when others =>
Y <=4;
NextState <= STO;
end case; :
end process; -

SEQ: process (Clock,Reset)
begin
if (Reset ='1") then
CunentState <= ST0;
elsif (Clock’event and Ciock='1") then
CurrentState <= NexiState;
end if;
end process;
end RTL; —

FSM1D - Combined CS, NS and OL

entity FSMID is
port (Clock.Reset: in bit;
Control:in bit;
Y: out integer range 0 fo 4);

curent
—{state
logic

end FSM\D:

architecture RTL of FSM1D is
type StateType is (ST0,ST1,8T2,5T3);
signal State: StateType:

begin
ALL_IN_1: process (Clock,Reset)
begin
if (Reset ="1") then i

State <= STO;
elsif (Clock'event and Clock='1") then .
case State is
when ST0 =>
State <= ST1;
when ST =>
if (CONIROL ="1") then
State <= ST2;
else
State <= ST3;
end if;
when ST2 =>
State <= ST3;
when ST3 => I—
State <= ST0; i
when others => i
State <= ST0;
end case;
end if;
case State is
when ST0=> VY«=1;
when STl => Y <=2
when ST2=> Y«<=3;

current state,
next State
and

output logic

when ST3 => Y<=4;
when others =>Y <= 1;
end case;
end process;
end RTL;

2.6

4.2 Modeling resets

The modeling styles for resets is fairly common
for all commercial synthesis tools. An
asynchronous reset can only be modeled using
the if statement, while a synchronous reset can
be modeled using either a wait or if statement.
If the current and next state logic are modeled
separately, an asynchronous reset must be
included in the sequential current state logic
while a synchronous reset may be included
with either the current or next state logic.
Clearly by always including a reset in the
current state logic it is easy to change it from
an asynchronous to synchronous reset or vice
versa if needed. Example code used for resets
in FSM models follow.

Asynchronous reset

CURR_NEXT_LOGIC: process (Clock. AsyncReset)

begin
if (AsyncReset = '1') then
Y <= ST1;
elsif (Clock'event and Clock = '1") then
case (Y)is
when ST1 => VY <=S5T2;
when ...

Synchronous reset

CURR_NEXT_LOGIC: process (Ciock, SyncReset)

if (Clock'event and Clock = '1") then
if (SyncReset ='1") then
Y <= STV
else
case (Y) is
when ST1 => Y <= ST2
when ...

CURR_NEXT_LOGIC: process (Clock, SyncReset)
begin
wait until (Clock'event and Clock ='17);
if (SyncReset = '1") then
Y <= ST1;
else
case (Y)is
when ST1 => Y <= ST2;
when ...

4.3 Defining the state encoding

The assignment of binary numbers to the state,
called the state encoding, can be achieved in
four ways.

1. Using an enumerated data type for the
current and next state signals, the synthesis
tool will automatically assign binary numbers
to the states; normally in increasing order. e.g.

type StateType is (STO, ST1, ST2, ST3, ST4);
signal CurrentState, NextState: StateType:

The state assignments defined by the synthesis
tool will therefore be:

STO = 000
ST1 =001
ST2=010
ST3=011
ST4 =100

2. An enumerated data type may be used in
the same way as in 1 above, but this time a
synthesis specific attribute is used to explicitly
define the desired state encoding e.g.

attribute ENUM_TYPE_ENCODING: string; - (1)

type StateType Is (STO, ST1, ST2, ST3, ST4), - ()

attibute ENUM_TYPE_ENCODING of StateType : type is -- (3)
"011 010000 100 110"

signal CurrentState, NextState: StateType: -- (4)

{1). ENUM_TYPE_ENCODING is the name of the
attribute known by the synthesis tool and
which is used specifically for this purpose.
The name may be different for different
synthesis tools and must be defined to
be of type string.

{2). The enumerated data type, StatelType, is

defined to have five values. (ST0-5T4)

(3). The attribute attributes the five values
to the five states e.g. ST0=011, ST1=010 etc.
(4). The CurentState and NextState data types are

defined to be of type StateType.

3. Constants can be defined and used to
represent state values. Unlike using the
synthesis specific attribute, models can be
synthesized using different synthesis tools, e.g.

constant STO: bit_vector(2 downto 0) :="011"
constant ST1: bit_vector(2 downto 0) :="010"
constant ST2: bit_vector(2 downto 0) := “000";
constant ST3: bit_vector(2 downto 0) := *100";
constant ST4: bit_vector(2 downto 0) :="110";

4. It may be desirable to allow the synthesis
tool to choose an optimal state encoding format
that minimizes next state logic. If so, consult
the appropriate synthesis manual on how it is
achieved. The synthesis tools provided by
Intergraph allow a panel entry of FSM
parameters from which it defines the state
encoding for an optimal netlist and also
provides a VHDL model for simulation
purposes.

2.7

4.4 Modeling Mealy or Moore type
outputs

The VHDL model of the example state diagram
of Figure 2 is shown. There is one Mealy type
output, Y_ME, and one Moore type output, Y_Mo.
The Moore type output is seen to be dependent
upon the state value only, while the Mealy type
output is dependent upon the state value and
the two inputs A and Hold. Because the Mealy
output is dependent upon inputs, it must be
modeled in a section of code that infers only
combinational logic.

entity FSM_MEALY_MOORE is
port (Clock, Reset. in bit;
A, Hold: in bit;
Y_Me, Y_Mo: out bit);
end FSM_MEALY_MOORE;

architecture RTL of FSM_MEALY_MOORE is
type StateType is (ST0, ST1, §T2, ST3, ST4, STS);
signal CurrentState, NextState: StateType:
begin
FSM: process (Clock, A, Hold)
n
beg.case CurrentState is Moore
whensO=> type
Y_Mo <=0 output
if (A="1)then
YMe<="I"——______ |Mealytype
NextState <= STO; __—"|output

olse dependent
Y_Me <=0 / P

NextState <= ST1; upon A
endif;
when ST =>
Y_Mo «="'1";
if (A="1)then
Y_Me <="1"
NextState <= ST2;
olse
Y_Me <='0";
NextState <= STO;
endif;
when ST2 =>
Y_Mo <="'0"
Y_Me <="'0%
NextState <= 5T3;
when ST3 =>
Y_Mo <="1%
if (Hold = '1") then
Y_Me <='0%
NextState <= ST3;
else
Y_Me <="1";
if (A="1")then
NextState <= ST4;
else
NextState <= STO;
endif.
endif;
when ST4 =>
Y_Mo <="1%
Y_Me <=0
NextState <= §T3;
when others =>
Y_Mo <=0
Y _ Me <="1"

NextState <= STQ;
end case;

if (Clock'event and Clock='1") then
if (Reset ='1") then
CurrentState <= STO;
olse
CurrentState <= NextState;
end if;
end if;
end process;
end;

4.5 Sequential next state or output
logic

Two examples are shown, one with extra
synchronous next state logic and one with
extra synchronous output logic. (By not
defining next state or output signals in all
branches of a state machine's case statement,
it is easy to inadvertently model extra unwanted
sequential logic in the form of latches.)

Example 2. FSM with sequential next state logic

A state machine with an extra flip-flop in the
next state logic is shown. The state diagram is
shown in Figure 7 and the implied architecture
from the model is shown in Figure 8.

Figure 7. State diagram implying sequential next
state logic

Next State Logic
-t
p—a’] s Next
o C State . Current Y1
- logic wfP{ Current State State, | Output Tz-
» ook ol s ey [T]
Y3 o
BeeninState 38

Figure 8. Architecture of FSM with extra
embedded sequential next state logic

2.8

The three inputs A, B and C each cause the
state machine to branch to states ThreeA, ThreeB
and ThreeC respectively on a priority encoded
basis as it passes around the loop of five states.
The synchronous reset is guaranteed to be high
for at least five clock cycles thus ensuring the
state machine starts in state One. After a reset,
the output Y1 is high for one clock cycle every
five clock cycles while A remains high, likewise
for input C and corresponding output Y3.
However, when B goes high, its corresponding
output Y2 goes high only once. The reason for
this is that when the state machine is in state
ThreeB the signal BeeninState3B is set high from
an additional flip-flop in the next state logic
and which is used to inhibit the state machine
from entering state ThreeB again until after a
reset occurs on Reset.

ontity FSM_SEQ_NEXT is

port(Clock Reset: in bit;
A.B C: in bit;
Y1, Y2 Y3 outbit);

ond FSM_SEQ_NEXT;

architecture RTL of FSM_SEQ_NEXT is
type StateType is (One, Two, ThreeA, ThreeB, ThreeC,
Dummy, Four, Five);
signal CurrentState: StateType:
signal BeeninState3B: bit;
begin
FSM_1: process (Clock)
begin
if (Clock'event and Clock="'1") then
case (CurrentState) is
when One =>
if (Resot = '1") then BeeninState3B
BeeninState3B <= '0';, setto 0
CurrentState <= Oné;
else
CurrentState <= Two;
endif;
when Two =>
it (A="1)then
CurrentState <= ThreeA;
olsif (B = '1") then
if (BeeninState3B ="'1") then
CurnrentState <= Dummy;
olse
CurrentState <= ThreeB;
endif;
elsif (C ='1") then
CurrentState <= ThreeC;
olse
CurrentState <= Dummy;
endif;
when ThreeA =>
CurrentState <= Four;
when ThieeB =>
BeeninStatedB <= 1"
CurrentState <= Four;
when ThreeC =>
CurrentState <= Four;
when Dummy =>
CurrentState <= Four;
when Four =>
CurrentState <= Five;
when Five =>
CurrentState <= One;

\\

BeenInState3B
setto 1

when others =>
CurrentState <= One;
end case;
ond if;
Y1 <=0
Y2 <='0%
Y3 <=0,
case (CurrentState) is
when ThreeA =>
Yl <="1%
when ThreeB =>
Y2 <="1"
when ThreeC =>
Y3 <="1"
when others =>
Y1 <="0%
Y2 «='0"
Y3 <='0"
ond case;
end process FSM_1;
end RTL;

Example 3. FSM with sequential output logic

The model of a FSM within an embedded
counter is shown. The counter forms part of
the FSM's output logic as shown in the implied
architecture of Figure 9. The state diagram of
the FSM is shown in Figure 10 .

Output Logic
Next State ';:. Current State CS:A‘M
» Bmam B logc | Lo 2 el| Comb. L] 5 bt Count
b, -
feoms) (3 Fap-Flops) Resar Counter

| —-
CountGE25
Tont >= 25 e

Figure 9. Architecture of FSM with extra
embedded sequential output logic

Count = Count + 1

EnableCount

Figure 10. State diagram implying sequential
output logic
After a reset the state machine is set to state
One and the counter in the output logic is set
to zero. After the reset, the state machine cycles
around a loop of four states. A two way state
branch allows one of two paths for the second
stage of the loop and is represented by states
TwoCount and TwoNoCount. When input
EnableCount is high the state TwoCount is used,
otherwise TwoNoCount is used. Therefore while

2.9

EnableCount is high the counter is incremented
once every four clock cycles. The counters’
value plus an indication of whether it is greater
than or equal to 25 are output from the model.

entity FSM_SEQ_OUT is
port (Clock, Reset: in bit;
EnableCount: in bit;
CountGE25: out bit
Count: buffer integer ronge Oto 31);
end FSM_SEQ_OUT,

architecture RTL of FSM_SEQ_OUT is
type StateType is {(One, TwoCount, TwoNoCount, Three,
Four);
signal CurrentState: StateType:
begin
FSM_ACC: process (Ciock)
begin
if (Clock'event and Clock="1") then
case CurrentState is
when One =>
if (Reset ='1") then
Count <= 0;
CurrentState <= One;
elsif (EnableCount ='1") then
CurentState <= TwoCount;

else
CurrentState <= TwoNoCount;
end if;
when TwoCount => counter
Count <= Count + 1; -—— embedded in
CunrentState <= Three; FSM model

when TwoNoCount =>
CurrentState <= Three;
when Three =>
CumentState <= Four;
when Four =>
CurnrentState <= One;
when others =>
null;
end case;
end if;
if (Count >= 25) then
CountGE25 <="'1";
olse
CountGE25 <= '0";
end if;
end process FSM_ACC;
end RTL;

4.6 Interactive FSMs

The modeling techniques for interactive FSMs
are the same as individual FSMs. For clarity,
it is usually better to use more code and keep
the code for models separate rather than
combining them. It is the designers choice what
coding method to use. Either way, the outputs
from one FSM are used for the inputs to other
FSMs.

5. Conclusions

The different checklist issues to be considered
when designing and coding FSM models in
VHDL have been discussed i.e. VHDL coding
style, resets and fail safe behavior, state
encoding, Mealy or Moore type outputs,
additional sequential next state or output logic,
and interactive FSMs.

The coding style is shown to be independent of
the FSM being modeled. If there is no reset, or
only a synchronous reset is available all 2" (n
= no. of state register flip-flops) binary values
must be decoded within the next state logic
whether they form part of the state machine or
not. There is generally only a small area
overhead in doing this. Seven types of state
encoding and four methods of modeling the
state encoding have been shown; the choice
being design dependent. If area is of critical
concern, letting the synthesis tool choose an
optimal state encoding is the preferred option.
Mealy and Moore type outputs have been
discussed indicating that the choice between
which to use is also design dependent. Also
shown, is additional sequential logic embedded
within the code of an FSM. Although this
sequential logic does not form part of the
standard FSM it does control state transitions
based on; a previously transitioned state, a
sequence of previously transitioned states, or
some accumulated value resulting from looping
around successive sequences of states.
Interactive FSMs have also been discussed
indicating that it is often better to keep the code
for different FSMs separate for clarity.

.10

