
How to Measure the Impact of Specific Development Practices on Fielded Defect
Density

Ann Mane Neufelder
Owner, SoftRel

Softrel@ix. netcom. com

Abstract

This author has mathematically correlated specific
development practices to defect density and probability
of on time delivev. This paper summarizes the results
of this ongoing study that has evolved into a software
prediction modeling and management technique.

The author has collected data from 45 organizations
developing software primarily for equipment or
electronic systems. Of these 45 organizations,
complete and unbiased delivered defect data and
actual schedule delivery data was available for 17
organizations. The author will present in this paper the
mathematical correlation between the practices
employed by these organizations and defect density.

This correlation can and is used to:
a) Predict defect density
b) Improve software development practices for the

best return on investment.

1. Introduction

In 1992, the USAF Rome Laboratories produced
Software Reliability, Measurement, and Testing
Software Reliability and Test Integration RL-TR-92-52
[l]. This document was one of the first publicly
available documents to quantify the relationship
between certain development practices and defect
density. Some of the weaknesses of this document are:

1.
2.

Several of the factors are weighted equally
Some of the development factors are difficult to
quantify. Examples include “experience level
above average” where “average” is not
quantitatively defined.
Some of the development factors are compiler
dependent. Examples include thresholds for
“Source Lines of Code (SLOC) per module”.
SLOC thresholds vary from one compiler to

3.

another and from object oriented compilers to
procedural compilers, yet this was not taken into
account.
Since the document was written in 1992, newer
technologies such as object oriented
programming and incremental life cycle models
are not addressed.

5. The document is directed to defense contractors
and is difficult to apply to commercial software
organizations.

4.

Even with the above weaknesses the document
proved to be a reasonable starting point for selecting
parameters that would ultimately correlate to defect
density. The author discarded parameters that were
outdated or difficult to measure consistently.

In 1994, this author selected 27 software
development parameters to be included in this model,
many of which were derived from the Rome
Laboratories document. While the Rome Laboratory
model had weighted each of these parameters equally,
the goal of this study was to determine individual
parameter weights. For example, this study found that
test beds correlated more strongly to defect density then
random testing. Later in this paper, the parameters that
were extracted from the Rome Laboratory document
will be illustrated in Tables 7 through 1 1.

Seven software organizations were evaluated
quantitatively based on these 27 parameters. [2]

The work continued and by 1997, there were a total
of 14 software organizations evaluated and the list of
correlated parameters had grown to 102 not including
21 information only questions that do not contribute to
a score. [3]

The author was able to include the seven
organizations that had originally been evaluated earlier
because those evaluations were so detailed that the

0-7695-0807-3/00 $10.00 0 2000 IEEE 148

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

information required for the additional 75 parameters
was well documented and available.

Average Average
margin of number of
error on late corrective
delivery as a action
YO of original releases per
schedule year
10% 3.67
88% 6
215% 8.5

138% 14

The 75 additional parameters transpired because of:

Average
SEI
CMM
level

2.1
1.2
1

1

1.
2.

Newer technologies and tools became available
Interviews with the organizations that exhibited
the lowest and highest defect densities in an
effort to determine the major differences
between them.

The data collected is assumed to be unbiased
because:

One person (the author) evaluated the practices
for each of the organizations using the same
criteria.
The author was intimately familiar with each
organization and their “actual” versus “wish
list” practices.
The author required each organization to
provide physical proof of all positively answered
questions.
To avoid documentation of overly optimistic or
pessimistic responses, the author required inputs
from a wide cross section of employees such as
managers, lead engineers, quality engineers, test
engineers, engineers with an average level of
experience and new hires. It is interesting to
note that the author encountered pessimism as
often as optimism.

The “actual” defect data was also calculated by the
author and normalized so as to represent similar defect
severities from one organization to another. The author
also normalized the KSLOC to be in assembler since
there were different languages represented in the study.

Actual defect density was computed on projects that
had been delivered using the corresponding practices
measured in the questionnaire. The defect density was

score on I Classification (.
study

computed by plotting observed failure intensity (x axis)
versus observed cumulative failures (y axis). The y
intercept of this line is the theoretical number of
inherent defects. It is theoretical because it is not
possible to know with complete certainty when there
are no defects left in the software. For the project data
to be considered for this study, at least 95% of the
estimated inherent defects must be observed or known.
These criteria ensured that defect density was measured
the same way on every sample.

In late 1999, the model was updated once more to
include data from 3 additional organizations. [4] The
author continues to refine the model as data becomes
available and as technology and development practices
continue to change. This paper illustrates the most
recent results.

2. The results

In this authors experience, software managers and
engineers often assume that engineering practices that
decrease defects will also increase development time.
For the companies in this study, that assumption was
simply not true. As shown in Table 1, the
organizations with the best practices had the highest
probability of making their schedules. When they did
miss their schedule the magnitude of error was
significantly smaller then for the companies without
good practices.

Table 1 illustrates that as score increases, the average
number of corrective action releases decreases. For the
organizations included in this study, more corrective
action releases mean more downtime for customers.

Some of the organizations benchmarked were striving
for more releases when in the results of their customer
surveys showed that their customers wanted fewer
releases with higher quality. For 9 of the organizations

Assembler
KSLOC

30%
66%
82%

88%
Table 1. Summary of results (Copyright SoftRel, 2000, reprinted with permission)

149

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

benchmarked in this study, the release time desired by
the customers was quarterly. The objective release
frequency varies from application to application,
however, and should be determined via appropriate
survey methods.

0 Insufficient testing methods
4.0 The scoring mechanism

4.1. How the score was developed

Defense systems
Process control manufacturing equipment
Mathematical software

The score was developed by mathematically correlating
the observed practices of these 17 companies versus the
observed defect density in terms of KSLOC of
assembler. The score was a composite of scores on
each of these areas.

Table 1 also shows that the average SEI CMM TM level
[5] increased as the score increased. The highest SEI
CMM level in this study was 2.5. While there is a
relationship between the score on this study and the SEI
CMM level, the questionnaire used in this study is not

5
11
1

derived from the SEI CMM evaluation questionnaire.

3. About the organizations measured

The sizes of the software organizations (software
personnel only) ranged from 5 to 60. The industry
breakdown for those organizations for which defect
data was available was:

The software systems were between 100 KSLOC and
1000 KSLOC. C++ was the language of choice with 2
exceptions. One organization used Smalltalk and one
used Pascal.

The organizations with the highest scores and lowest
defect densities had this in common:

0 Software engineering is a part of the engineering
process and is not considered to be an art form by
anyone in the organization
They believe in a well-rounded sound set of
development practices as opposed to a “single
bullet”.

0 Formal and informal reviews of the , software
requirements prior to proceeding onto design and
code.
Testers are involved in the requirements translation
process.

0

The organizations with the lowest scores had this in
common:

Lack of software management.
0

0

0

Misconception that programmers know what the
customer wants better then the customer does.
An inability to focus on the requirements and use
cases with the highest occurrence probability
Complete void of a requirements definition process

The questionnaire has 5 sections.

0

0

Organization commitment (see Table 7)
Life cycle practices (see Table 8)
Product characteristics (see Table 9)
Change control practices (see Table 10)
Informational questions that currently do not have
a correlation to defect density (see Table 11)

Tables 7 to 11 illustrate the single parameter
correlation, the maximum points possible for each
question and an indication of whether the parameter
was part of the Rome Laboratory model discussed in
section 1.

Important note: A negative correlation is expected
when correlating practices to defect density. A
correlation of -1 means that the practice perfectly
correlates to lower defect density. A correlation of +1
means the practice perfectly correlates to higher defect
density. A Correlation of 0 means no correlation at all.

This questionnaire has 102 questions and was used to
evaluate the practices of the organizations in this study.
These questions were developed and continue to be
refined by the below process:

Review practices that had already been
mathematically correlated by the USAF Rome
Laboratories TR-92-52.
Study organizations that were at the top of their
industry or application type for software deliveries.
Study organizations that were at the bottom of their
industry or application type for software deliveries.
Ask the customers of these software organizations
what key factors they felt impacted software
reliability and investigate.

0

The author developed the score mechanism described in
this paper with this process:

150

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

1.

2.

3.

4.

5.

6.

Select parameters that are likely to correlate
directly to higher or lower defect densities for any
organization and not just one specific organization.
Make sure that each parameter is measurable. An
example of a parameter that is difficult to measure
is a “programmer’s individual
capabilities”. This author has not found a
consistent way to measure an individual’s
capabilities that can be generically applied to any
organization or individual. However, this author
can measure the capabilities of the organization as
a whole. (i.e. the SEI CMM level).
Determine if each single parameter correlates to
the empirical defect densities for each of the
samples.
Drop any parameters that do not correlate (but keep
that information as it is possible that that
parameter may correlate at a later time when the
sample size is larger.)
If the parameter correlates then determine it’s
relative weight by using its relative correlation as a
seeding value. Find the best weight by maximizing
scoring algorithm vs. defect density correlation and
solving for the weight for each single parameter. It
should be noted that while the single parameter
correlation was used as a seeding value to
determine the scoring weight, the score for the
parameter is not necessarily directly or linearly
related to the correlation.
Repeat steps 1 to 6 when more samples are
available with complete data.

4.2. Scores versus defect density

The relationship between empirical scores and
empirical defect density that maximized the correlation
between the observed practices and the observed defect
density was determined to be: [SI

DD=0.000001~”2 - 0.002531~ + 1.394135

Defect density (KSLOC assembler)
vs. Score

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
0.00 500.00 1000.00 1500.00

Figure 1. Actual scores vs. actual defect
Density
Where x is the score and DD is the defect density on
delivery day.

The units for defect density are defects per 1000 source
lines of assembler code. To determine the defect
density in terms of another language, the code
expansion ratio of that language is multiplied by the
above defect density prediction. [6]

This defect density is then multiplied by the size of the
project to determine the inherent number of defects in
the sofhvare (No). The fielded failure rate can be
predicted by estimating the ratio (Q) between inherent
defects and failures per time based on historical data.

Q is estimated by (3L2-hl)l(nz - nl)where n2 is the
cumulative number of defects observed up to time 2,
nlis the cumulative number of defects observed up to
time 1, h2is the observed failure rate at time 2 and 3L1 is
the observed failure rate at time 1. [7]

h (t) = NO * exp(- Q*t/No) t

4.3. Expected versus actual results

There was one set of parameters that did not correlate
as strongly as the author had expected. These
parameters pertained to Configuration Management
(CM) and source control.

The author has reason to believe that these parameters
did not correlate strongly with this set of data because
all of the organizations in this study had some type of
configuration management or source control. Their
methods and techniques for achieving this varied
greatly therefore making it difficult to quantify a
correlation between specific CM practices and defect
density.

Parameter

Procedures for CM and source
control?

Single
parameter
correlation ty to 1
defect densi
-0.14

CM system used? 1 -0.45
Allows for concurrent versions? I -0.15
Ability to stop shipment? 1 -0.24
Used for requirements and design 1 -0.32
documents? I I
Fully automated? I -0.13 I

151

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

1 Reqsreviews I -.87 I

Parameter
Requirements tools
Desim tools

Table 2. Configuration management practices
correlated to defect density

Single parameter correlation
-.32
-.55

This author continues to monitor configuration
management and source control parameters as these
parameters may ultimately correlate as the sample size
in this study increases.

Parameter
Coding reviews
Design reviews

Another set of parameters that did not correlate as
strongly as this author expected was the use of
automated tools. While unit-testing tools had a strong
correlation, the use of requirements and coding tools
did not. It is possible that the organizations that used
these types of tools did not use them properly or to their
fullest range of capabilities.

The ten parameters with the strongest correlation are
shown on the next page, None of these were a surprise

Single parameter correlation
-. 125
-.65 to the author.

This author has refined the questionnaire process to
filter for organizations that “correctly” use automated
tools.

Coding tools I -.40
Unit testing debuggers I -.76

I System testing tools I -.11

Table 3. Tools correlated to defect density

Another parameter that did not correlate as strongly as
this author had expected was coding reviews. It is
interesting to note that requirements reviews and design
reviews correlated very strongly. It is likely that coding
reviews did not correlate strongly in this study because:

1) The reviews may not have been conducted on the
portion of the code that has the highest occurrence
probability

2) The review criteria may have been geared towards
maintainability issues that impact the longevity of
the code but may not result in an immediately
observable decrease in defect rates

3) The reviews may not have been followed up by
action items in an appropriate time frame.

The author has added additional detail to the
questionnaire to filter organizations that are not
performing code reviews effectively.

Table 4. Reviews correlated to defect density

Another parameter that did not correlate as strong as
this author had expected is the use of Object Oriented
(00) methods. The single parameter correlation for
this was -17. All of the organizations that employed
00 methods admitted that their product was a hybrid of
00 and procedural code. They also admitted that at
least some members of the software organization were
not able to name the 4 characteristics that distinguish
00 programming. These are inheritance,
polymorphism, abstraction and encapsulation.

The author continues to monitor 00 practices and has
added more detail to the questionnaire in order to filter
the degree to which 00 practices are employed.

The author has been monitoring the below set of
parameters but to date does not have sufficient data to
determine a quantitative correlation. However, the
author continues to collect this data and may ultimately
have these parameters as part of the model.

Table 5. Product measures that may ultimately
correlate to defect density in this study

4.4 The parameters with the strongest
correlation

With one exception, there were no parameters that
correlated significantly stronger then expected. This
author did not expect Year 2000 (Y2K) testing to
impact defect densities since the defect densities were
observed in the 1999 calendar year. However, Y2K
testing had a single parameter correlation of -.54 to
defect density. The author believes that the
organizations that did Y2K testing were likely finding
other defects during this testing process.

152

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

Parameter

4. Incremental testing (as opposed to
“big bang” testing.)

5. Scheduled regression testing
consistently performed by
independent testers
Defect and failure tracking systems
that are used by testers for test plan
development
There is a defined life cycle model
that best suits the application,
market, and organization.

8. Testers involved during
requirements and design. Test
plans are started during the
requirements phase.

6.

7.

9. Automated unit testing tools
10. Explicit test cases for user

documentation

Single
parameter
correlation
to defect

-.84

-.83

- 3 1

-.81

-.76

-.76
-.76

densi

and informal reviews of the
software and system requirements

is well supported by industry. I
3. Existence and use of test beds 1 -.85

Table 6. The parameters that exhibited
strongest negative correlation to defect density

5. Practical uses for the model

This model can be used in one of two ways. It can
either be used to predict defect density or it can be used
to make improvements in ones development process.
This author has found that software managers are
generally more interested in the relative measure as
opposed to the absolute measure. While reliability
engineers are generally interested in the absolute
measure.

The key feature of this model is for management to
select the 2 or 3 development practices that have the
highest weighting with the lowest cost. The weighting
factors that the author applied to each development
practice provide a good starting point for this.

Another key feature is to use this model to satisfy
quantitative software reliability requirements as early as
the proposal stage. This model can be used before a
single line of code is written.

6. Ongoing Work

This work done is ongoing. New data is added on a
*yearly basis. The author plans to expand the sample
size to include organizations with higher SEI CMM
levels as the highest SEI CMM level in this study was
2.5. The author also plans to include organizations in a
variety of industry and application types.

7. Biography

Ann Marie Neufelder is the author of “Ensuring
Software Reliability” published by Marcel Dekker, is
the co-author of SEMATECH’s Tactical Software
Reliability Guidebook and “System Software Reliability
Assurance Guidebook” for Rome Laboratory.

8. References

[1,7] J. McCall, W. Randell, J. Dunham, L.Lauterbach,
“Software Reliability, Measurement, and Testing
Software Reliability and Test Integration RL-TR-92-
52”, Produced for Rome Laboratory, Rome, NY, 1992.

[2]A.M. Neufelder ,“Benchmarking Software
Reliability” presented at the “SEMATECH Artwork V
workshop”, Austin, TX, 1994.

[3], A.M. Neufelder, “SoftRel’s Benchmarking Study” ,
Published by SoftRel, Hebron, KY, 1997. This
document is available via soArel@;ix.netcom.com.

[4,8] A.M. Neufelder, “The Naked Truth About
Software Engineering in the Semiconductor Equipment
Industry”, Published by SoftRel, Sugar Land, TX. This
document is available via softrel@;ix.netcom.com.

[5] D.K. Dunnaway, S . Masters, “CMM Based
Appraisal for Intemal Process Improvement (CBA IPI)
Method Description, Technical Report CMU/SEI 96-
TR-007”, Software Engineering Institute, Pittsburg,
PA, 1996.

[6] P. Lakey, A.M. Neufelder, “System Software
Reliability Assurance Guidebook”, Rome Laboratory,
Rome, NY, 1995. Table 7-9.

153

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

mailto:soArel@;ix.netcom.com
mailto:softrel@;ix.netcom.com

Organization Commitment

0

0

Upper management views software as an engineering discipline

Software managers view software as an engineering discipline
(software is not an afterthought). The software manager does not
code but does participate in requirements and design.

0 There is a defined software team structure that optimizes both
capabilities and time
Software engineers are located geographically near the other
engineers

~

There is a defined structure for how software interacts with other
engineering disciplines

The software engineers view themselves as engineers as opposed to
artists (Do they consider themselves to be part of engineering? Or
would they rather “create” without having to deal with
engineering?)
Are short term outside contractors used for desigdcode that does
not require intimate understanding of your application and
proprietary inventions? Are they used for code that is generic as
opposed to code that someone in your organization can do better?
There are software testers that do not write software
There are software quality engineers that do not write software

0

0

Table 7. Organization fa1

Part of the
Rome
Laboratory
model?
No

No

Yes

No

No

No

No

No
Yes
Dr

Correlation

-.37

-.70

-.52

-.32

-.13

-.33

-.53

-.56
-.56

Maximum
score
allowed

1.4

28

2.8

5.6

0
(parameter
dropped)
7

7

24
28

154

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

Life cycle practices Part of the
Rome
Laboratory
model?

score
allowed

Life cvcle model
Is there a defined life cycle model that best suits your organization,
application, market and time to delivery constraints? (Examples are
waterfall. incremental. sDiral. combinations of these.)

No

AnalysisIRequirements
0

0

0

0 Are there reauirements reviews?

Is analysis tasks part of the schedule?
Is the customer or customer representatives involved in this phase?
Do you translate customer requirements to software requirements?
Are conflicts resolved before moving forward with design and code?

-.73 1 2 No
No -.49 1 Dromed
Yes
No

Dropped
Dropped

No -.84 I 15
Dropped No

No 0

0

Design

Do you prototype requirements when applicable?
Are testing personnel involved in this phase
Is the test planning started in this phase?

Do you use tools for defining and translating requirements? $-y Dropped
No
Yes

-.64

No
No
No

0

0

0

Are there design reviews?
0 Is prototyping used?
0

Are design tools used?
Coding

0

Is design tasks part of the schedule?
Are there procedures for it? Are they used?
Are requirements traced to design?
Is there a top-level design?
Is there a detailed design?
Are conflicts between design and requirements resolved before
coding?

Is testing involved during this phase?
Is the test plan evolving during this phase?

Are there coding standards and are they used?
Are software requirements explicitly traced to the design to show
that no requirements are missed in the design?
Are conflicts in the customer or system requirements or top level
design or detailed design resolved before designing or coding?
Is module level error handling left as an after thought?
Are debuggers used to assist in coding?
Are automated tools used for coding?
Is at least someone from the testing organization is involved in the
coding phase mainly to keep track of any changes to the
requirements as a result of coding?
Is the test planning refined during the phase in the event that the
requirements are changed as a result of any conflicts found during
coding?
Is the code reviewed before moving forward to testing

Table 8. Life cycle practice!

Indirectly
Indirectly
No

-.36 Dropped
-.41 Dropped
-.62 3

I

-.65 1 2 Yes
No -.64 I 1
No
No
Yes

Yes
No

No -.5 I

No
Yes
Yes

Dropped
D r o D D e d -.40

No

No

No -.125 [Drou~ed I
actor

155

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

~~

Correlation Life cycle practices (continued) Maximum
score
allowed

Part of the
Rome
Laboratory
model?

0 Are tools used?
System Testing
0 Is system testing part of the schedule? Does someone who did not do

the coding perform it?
Are there procedures for testing?

Does the test plan map to all written and implicit requirements?

Are conflicts between the test plan and the requirements resolved?
Does the test plan contain tests for the critical path and use cases?

Does the test plan contain tests for error handling?
Does the test plan contain tests for system behavior?

0

0

Yes

No

No

No

No
yes
Yes
No

If applicable, does the test plan address security requirements?
If applicable, does the test plan address multi-user requirements?
If applicable, does the test plan address configuration requirements?

No
N~
N~

Is a simulator used for testing in the event that the real hardware is
not available?

Yes

-.66
-.46

7.5
.25

-.54 .5

-.52 .5

-.76 7.5
1 -.65

-.54
-.52

.5

.5

1 -.64

-.52
~

c

-.41 1

-.65 1.5

Is the test plan refined during this phase? I No -.65 1.5

-.53 1.5

-.60 10

-.26

-.89

2

40
6 -.65

-.27
-.60

2
6

Dropped
4

-.09

-.49

-.85
-.72
-.61
-.50
-.65

Does the test plan contain installation tests? I No

0 Are test beds used? 1 No
If applicable, does the test plan address performance? I No 12

6
4
6

Is the user documentation tested? I No -.76 12

Was Y2K planned for? I No -.54 4

Are automated tools used for testing? I No Dropped
10

-.I 1
-.68

156

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

Life cycle practices

-.83

-.71

-.62

Regression Testing
0 Personnel, other then the developers who wrote the code or fixed the

code, re-test the software after some amount of corrective action
activity and that the test is from an end users perspective.
How the regression testing is expected to proceed is documented and
procedures are used.
Someone retests all corrective actions made after some baselined
version other then the programmer on a built version of software.
Someone retests all new features made after some baselined version
other then the programmer on a built version of software.
Someone retests any other changes made after some baselined
version other then the programmer on a built version of software.
All use cases that are critical to the end user are retested by someone
other then the programmer regardless of whether the changes since
the last regression test impact this use case.
Areas of the software, which are historically high risk, are retested
regardless of whether these high-risk areas were changed since the
last regression test.

Do you have general quality assurance procedures that apply to your
software and it's process?
Do you have procedures for how and when software versions are
delivered to vour customer? A checklist is an exam~le.

0

0

0

Miscellaneous
0

0

1.25

.75

.5

I

completion? 1) how many effort months 2) how many calendar
months and 3) how biz.

0 Fault metrics - Do you measure MTTF, defect density or any other
similar metric for the purpose of determining when the software is
acceptable for delivery?
Reuse libs - Do you have reusable code or design in a library that all
Drozramrners can access?

0

Root cause - Do you occasionally do a root cause analysis to see
what the most common software defect categories are? 1

I "
0 If so, do you make changes to your process as a result?

Do you have equipment, or a fragment of the equipment, that can be
used by the software engineers on a regular and predictable or
scheduled basis

Part of the
Rome
Laboratory
Model?

No

No

No

N O

No

No

No

No

No

No
No
No

Yes
Yes

No

No

No

No

No

No
Yes

score
allowed

I .5
-.68

I -75
-.75

+-
I + Dropped

-.lo I Dropped

-.39

157

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

Table 8. Life cycle practices (continued)

No

Product metrics Correlation Maximum
points
allowed

-.86 70 Is the language(s) employed supported well? (Are there automated
tools that support this language? Does the manufacturer of this
language/compiler provide tech support? Does the manufacturer of this
language/compiler provide releases on a regular basis?)
Is the operating systems(s) employed supported well? (Are there
automated tools that can be used on this OS? Does the manufacturer of
this OS provide tech support? Does the manufacturer of this OS provide

No
No

releases on a regular basis?)
Table 9. Product metrics

Correlation Maximum
score
allowed

-.11 Dropped
-.73 5

Change Control

No

Corrective Action
How corrective action should be done is documented and accepted.
The programmer while making a corrective action tests all
changed units.
The programmer while making a corrective action retests all paths
that intersect a change.
Source control is employed to track corrective actions.
The programmer tests all new units when making any corrective
actions.

-.68 5 0 The programmer documents all changes in a failure reporting
svstem.

No
No
No

The programmer retests all areas of code that use global data
impacted by this corrective action.

Failure and defect reporting systems
Do you have a system for tracking failures reported both internally
and by your customers?
Are there written procedures for how internally and externally
reported failures are tracked?
Are the procedures used?
Is the tracking system automated?
Do testing p e e
Can your customer input information into this system either
directly or via helpdesk?
Can any applicable field persons input information into this system
either directly or via helpdesk?
Do systems engineers have access to this system? Do they use it?
Do other engineers like firmware, etc. have access? Do they use it?
CM link - Is there a physical link between your FRACAS and your
source control system so that changes made to the source code are
all reflected somehow in your FRACAS system?
Is your system on the internet or intranet?

-.45 3
-.69 9
-.81 45

No -.75
No -.43

actor

36
3

No I -s3 l 2
I I

No I -.57 1 2
No I -.I3 1 5

No I -.43 I 1
No I -.46 1 3
No I +.002 I Dropped

No I -.49 1 3

I --22 I Dropped
No

No I -.40 1 3

I I

No I -.44 1 3

Table 10. Change control factors

158

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

Question
Defect metrics
What percentage of your defects found in testing are the result
of corrective action to code that used to work? (Note that a
review of the failure and defect databases is required to measure
this accuratelv.)
What percentage of your defects found by the customer is the
result of corrective action to code that used to work? (Note that
a review of the failure and defect databases is required to
measure this accurately.)
What percentage of defects is found in each of these phases? 1)
Requirements reviews 2) design reviews 3) codinghnit testing
4) integration 5) system testing 6) customer. (Note that a review
of the failure and defect databases is required to measure this
accurately.)
What is the top 3 root causes for software defects? (Note that a
review of the failure and defect databases is required to measure
this accurately.)

Productivity
Amount of code or function points delivered, calendar time
from start of design through delivery required and man-years
expended from start of design through delivery.

Releases per year

Life cycle process measures
Configuration Management and Source Control

SEI CMM level
Industry and application type
Product metrics

Table 11. Questions that don’i

Reason

If this is high that indicates a process that is
adhoc.

Same as above. Additionally, this indicates a
more urgent need to get the process under
control, as the lack of process is most likely
visible to the customer.
This profile should resemble a bell curve if
each of the reviewhesting activities is effective.

The answer itself is not really the important
piece of information. What is important is
whether the organization is able to accurately
identify the top root causes AND address them
once known.

The answer is not as interesting as whether or
not the organization is actually tracking this.
How big, how long and how much are three
metrics that are basic measures yet are
required prerequisites for scheduling
accurately.
Used for informational purposes in order to
compare defect density and scores to a
customer visible measure.

As discussed earlier, there are 7 questions
related to this topic which currently do not
have a strong correlation to defect density but
are tracked anyhow in the event that the
parameters correlate at a later time when the
sample size is greater.
This is tracked for information purposes.
This is tracked for information purposes
As discussed in this paper, 6 product metrics
are tracked when the information is available
in hopes that there will ultimately be enough
data to develop a correlation.

contribute to the score

159

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 14, 2009 at 01:19 from IEEE Xplore. Restrictions apply.

