
Cognitive Complexity Metrics and its Impact on Software Reliability Based on
Cognitive Software Development Model

Dharmender Singh Kushwaha and A.K.Misra
Department of Computer Science and Engineering

Moti Lal Nehru National Institute Of Technology
Allahabad, India.

Email:dharkush@yahoo.com,arun_kmisra@hotmail.com

Abstract
Software metrics provide a quantitative basis for the development
and validation of models of software development process.
Information gained from metrics is used in managing the
development process in order to improve the reliability and quality
of software product. The software metric is used to estimate
various parameters of software development lifecycle such as cost,
schedule productivity, quality and reliability. In this paper, an
attempt has been made to frame the cognitive complexity metrics
that will aid in increasing the reliability of software product being
developed during the development lifecycle.

Keywords
Cognitive Software Development Model,Cognitive
Documentation Complexity, Metacognition, Cognitive Software
Inspection Process, Cognitive Requirement Engineering.

1. Introduction

Metrics are a useful means for monitoring progress, attaining more
accurate estimation of milestones and developing a software
system that contains minimal faults thus improving the quality.
Measures are necessary to identify weaknesses of the development
process. They also prompt the necessary corrective activities and
enable us to monitor the results. Hence they act as feedback
mechanism that plays a vital role in the improvement of the
software development process. There is an urgent need of software
metrics to monitor the software development process for
improving the overall quality of the software . Since complexity
metrics are a significant and determinant factor of a systems
success or failure, there is always a higher risk involved when the
complexity measurement is ignored. Software metrics have been
used for over three decades to assess or predict properties of
software systems, but success has been limited by factors such as
lack of sound models, the difficulty of conducting controlled
repeatable experiments in educational or commercial context, and
the inability to compare data obtained by different researchers.

It is hypothesized that an overly complex code (i.e. an unstructured
code with low cohesion) will be difficult to maintain and is likely
to be unreliable. In order to create software, our design decisions,
cognition, metacognition learning process and problem
comprehensibility should be able to guide us to create software
such that overall complexity is reduced. The most efficient way to
deal with developing reliable software for large systems is by
creating smaller modules. Weyuker’s [7] property 5 (∀P)(∀Q)(|P|

≤ |P;Q| and |Q| ≤ |P;Q|) just aims to achieve this. The implication
of this property is that as the size of program segment is increased,
its complexity should also increase. Hence the divide and conquers
technique which relies on decomposing the original problem into
sub-problems with well defined interactions will lead to a
structured design that will make the software reliable and
maintainable.

Cognitive aspects focus on the ease of understanding or the
property of comprehension. Comprehension is the key feature that
distinguishes any entity as being complex or simple.
Comprehensibility of a problem helps in efficient design solution
and improvement of software product quality. Thus property of
comprehensibility can be used in all the different phases of
software engineering.

2. Cognitive Software Development Model

Kushwaha and Misra [5] have proposed Cognitive Software
Development Model, with emphasis on cognitive aspects. This
cognitive model of software development is based on the
following broad phenomena:

• Cognitive process of requirement engineering;
• Cognitive system analysis;
• Cognitive system design;
• Assigning team members to different tasks based on the

cognitive phenomena;
• Cognitive approach to software inspection and testing;
• Cognitive documentation style.

The cognitive software development model of software
development is illustrated in fig.1
It can be inferred from the cognitive software development model
that the phases that also contribute to software reliability are:

1. Cognitive phenomena based team member selection;
2. Human centric requirement engineering;
3. Cognitive software inspection, a part of testing;
4. Documentation based on cognitive phenomena and
5. Validation by Metrics.

Hence the following sections of our paper will elaborate on how
above-mentioned factors and metrics will help in development of
reliable software systems.

ACM SIGSOFT Software Engineering Notes Page 1 March 2006 Volume 31 Number 2

3. Reliability

The basic requirement for software system is correctness. A
program is correct if the output satisfies the output requirements
for every input specified by the input requirements. There are
active and passive approaches to achieve program correctness. The
active approach takes the form of program correctness proofs.
Passive approach takes the form of traditional testing and
debugging. Since testing can only indicate the presence of bugs,
not their absence, hence it is not possible to estimate the number of
bugs remaining in the software system. Hence testing cannot
guarantee program correctness. Based on the above reasoning the
reliability of software can be defined as the probability that the
subsequent execution and invocation of the program is also
correct.
Our approach to reliability is based on the theory of “Prevention is
better than cure”. To achieve this, we propose our metrics that are
constructive, analytic and cognitive in approach. We begin with
human centric approach of requirement engineering in the next
section.

4. Cognitive Process of Requirement Engineering

Until now, the requirement engineering has focused on the
following areas:

• Abstract functional requirements;

• Non-
functional
requirements;

• System
properties
such as
availability
and
performance;

• System and
environment
requirements.

The areas that have a
major impact in

requirement
engineering but often
ignored are:

• They do not
distinguish

between the
client and the
end user.
Since client is
the one who
first comes in
contact with
the software
engineer /

software
practitioner

representing
the vendor

and the end user is the one who has to use the software.
The perspectives of both shall be different and should be
gathered carefully.

SYSTEM

Cognitive Process of
Requirement Engineering

Problem
Analysis

System
Design

Sub-System
Design

Sub-System
Interface Design

Validation by
Metrics

Implementation /
Development

Testing

Maintenance

Cognitive

Phenomena
Based
Team

Member
Selection

Documentatio

n based
on

Cognitive
Phenomena

Figure 1:Cognitive Software development moel

• Client is not able to describe and establish the cognition
and psychological level of the end users of the proposed
system

• The requirement analysis is not performed from the users
point of view and as such system oriented requirement
analysis is performed

• The requirement-gathering phase doesn’t distinguish
between low level details and cognition characteristics of
these details.

• System oriented design fails to uncover the need for
domain specific training of the end user or change in
human organization.

The cognitive requirement-engineering model is proposed to
provide a holistic description of cognitive characteristics of the
system under study (including the cognitive characteristics of the
end user). Cognitive characteristics capture information such as
user preferences. These also help in understanding the cognitive
phenomena of the user, which will help in streamlining further
interactions with the users in producing reliable software. We
propose a model to describe the cognitive characteristics of the
different user as depicted in fig. 2.
The requirement analyst has the responsibility of analyzing the
requirements and views. The requirement gathering, if properly

ACM SIGSOFT Software Engineering Notes Page 2 March 2006 Volume 31 Number 2

classified depending on the kind of user interacted with, will
provide for a total system view, thereby reducing the number of
interactions and the rework. These views can be organized as a
tuple [RTP, RPROF, RAMAT, RNOV] representing requirements of top
management, professional, amateur or novice user. Once the
analyst is able to categorize the viewpoint of the users at different
hierarchies with varying cognitive phenomena, the overall system
developed will be in total synch not only with the explicitly stated
requirements but also with the implicit ones. Also the information
domain of the system to be developed must be clearly understood.

The requirement-engineering model is depicted in fig. 3. The
person who is the catalyst behind the request for the software will
play a key role in extending the need analysis and hence carrying
out the requirement analysis. Once proper requirement engineering
has been carried out, we can safely proceed to problem analysis.
This will reduce the amount of rework.

 SYSTEM USER

 TOP
MANAGEMENT

 END USER

 NEW
CLIENT

EXISTING
CLIENT

COGNITIVE PHENOMENA

Professional Amateur Novice

Figure 2: Cognitive characteristics of user

5. Cognitive Software Inspection and Team Member
Selection

As the software system evolves and grows larger, the effort and
cost needed by verification process grows astronomically. Dolan
[6] reports a 30 times return on investment for every hour devoted
to the software inspection. Software inspection process is still far
from optimal, and one area that has seen limited research is the
impact of team member selection on it.

The bottlenecks of code inspection are:

 Operational
Characteristics

Of Organization

Cognitive
Characteristics
of User

Feasibility
Study and

Report

Requirement
Elicitation

Cognitive
Character-

istics of
Requirement

Elicitation

Requirement
Specification

Require -
ment

Validation
 Require-

ment
Documentation

Figure 3 : Cognitive Requirement Engineering Model

• Lack of research on team member selection
• Incorrect selection mechanism of team members
• Team members sharing / possessing similar view point to

a particular problem

ACM SIGSOFT Software Engineering Notes Page 3 March 2006 Volume 31 Number 2

• It is a cognitive phenomenon, but unfortunately, it has
been seen in terms of technical maturity of team member
performing the code inspection.

 SOFTWARE ENGINEER / PROFESSIONAL

REALISTIC IDEALISTIC

Solution
Seeking PROFESSIO AMATEURS

NALS

GUI
Design Deve loped

Higher level
Cognitive
Function

Sub -
Conscious
Function

Meta
Cognition
Function

System
Architect

To overcome the above bottlenecks, a cognitive model of team
selection procedure for software inspection is proposed based on
the functionalities best performed depending on the cognitive
activity level of team members.

ure

Coding Testing Coding

Code
Review &
Testing Testing Requireme

nt
Gathering

Code
Review

Quality
Control

Code
Review

SOFTWARE INSPECTION TEAM

Figure 4: Cognitive phenomena based team member selection mechanism

ACM SIGSOFT Software Engineering Notes Page 4 March 2006 Volume 31 Number 2

Wang [10], proposed cognitive phenomena, which classifies
cognitive functions as sub-conscious, meta-cognitive and higher
cognitive. Wang [8] described two types of programmers –
realistic and idealistic. It is important issue to contrast and analyze
the cognitive levels of the team members. It is agreed among
researchers that increasing diversity among team members is the
key to increasing the software inspection effectiveness. Hence
creating inspection team with a combination of members from
different cognitive levels will increase the effectiveness of code
review, thereby reducing the testing effort.

The difference between professionals and amateurs is whether
their knowledge and skills are wired or temporary programmed in
the brain [9]. For e.g. Professional software engineers possess
wired skills in programming, and with a global view on software
development. They focus not only on required functions, but also
on exceptions-handling and fault tolerance. However, amateur
programmers possess ad-hoc programming knowledge, eager to
try what is directly required, and tend to focus on details without a
global and systematic view. Hence software inspection and testing
team should include members from this amateur category also,
since they have the quality to have a narrow focus as illustrated in
fig. 4. The amateurs try to deal with individual concepts before
taking on the new ones are also candidate for testing and
debugging. This will ascertain that the software inspection so
carried out increases the reliability of software product.

6. Cognitive Documentation Complexity (CDC)

Very little attention has been paid to the comprehensibility of
various documents created during software development lifecycle.
If a novice is able to understand the various documents, then we
are sure of creating a reliable and quality artifact. Cognitive
documentation complexity of a class can be measured in terms of
the cognitive phenomena and the associated weight. There are
numerous documentation types that will speak about the level of
useful information provided by the documentation. Even today,
header information, comments and use of good identifier names
are considered to be the quality factors of best documentation.
These practices, do not count on the comprehensibility and the
cognitive phenomenon of the mind that assists the software
developer in reducing the comprehension effort and improving the
coding standard.
If the documentation provides reasonable amount of useful
information about the class to a novice, average and expert
software practitioner, it implies that ready understandability was
present in the documentation of the class and is termed to be of
high quality. On the contrary, if only expert practitioner
understands the documentation, then the documentation quality is
termed to be low. This also implies that sub-conscious cognitive
functions (the one that are not wired) are not enough in
comprehending the documentation. The classification of cognitive
phenomenon is as described by Wang [10]. This is summarized in
the table below.

S.No Cognitive Phenomena associated with
Documentation

Quality of
Documentation

1. Sub – Conscious Cognitive function High-Quality

2. Meta – Cognitive function Average-Quality

3. Higher Cognitive functions Low-Quality

Table 1: Quality of Documentation Based on Cognitive
Phenomena

High quality documents are very useful and enable us to:

• Enhance comprehensibility of software product
• Reduce maintenance cost
• Effectively exploit the system
• Reduce re-engineering cost and effort.

7. Cognitive Conceptual Complexity of Class / Module

The syntactic metrics measure the complexity of the software. It is
the details of implementation that determines the comprehension
complexity [1, 2]. We also need some metrics to measure the
psychological complexity that measures the difficulty of
understanding of the software module. This psychological
complexity is based on the number of distinct key concepts in the
class or module and is defined as

 m
CCCC = ∑ [(No. of distinct Cognitive Concepts) * (Weight of

i=1 Concept)]i

Where ‘m’ is the number of distinct concepts in the class or
module.

The weighing factor of cognitive concepts is based on the
classification of cognitive phenomenon as described by Wang [8],
is as follows:

S.No Cognitive Phenomena Weight

1. Sub – Conscious Cognitive function 1

2. Meta – Cognitive function 2

3. Higher Cognitive functions 3

Table 2: Weights Based on Cognitive Phenomena

Higher weight indicates that greater amount of comprehension
effort is required in understanding the software module under
consideration. If there exists a distinct concept but is not
understood by the practitioner (because he may be novice or semi-
skilled), it is the subconscious life function that will guide him to
identify it. Hence higher weight is associated with it. Higher
cognitive functions will require lower comprehension effort and
hence lower weight associated with it.

The mind is an artifact model of oneself and a thinking engine.
The mind, as a virtual model of a person in the brain, is partially
programmed and partially wired. The former is evolved for the
flexibility of the life functions while the latter is formed for the
efficiency of frequently conducted activities. The complexity of
the class can be calculated by using the CICM metric that is a
robust cognitive complexity measure [3, 4].

 8. Conclusion

ACM SIGSOFT Software Engineering Notes Page 5 March 2006 Volume 31 Number 2

This paper is based on the cognitive software development model.
It has made an attempt to emphasize the importance of cognitive
metrics and its impact in achieving reliable software development.
It also identifies those areas that are vital to reliable software
development process but have been either ignored or given lower
degree of importance by the researcher community in the past. In
future, we shall work to propose cognitive complexity metrics for
all the phases of cognitive software development model in order to
produce software that is not only reliable but is of highest quality.

References

[1] Kushwaha, D.S. and Misra, A.K.,: A Complexity Measure
Based on Information Contained in the Software, 5th WSEAS
International Conference on Software Engineering, Parallel and
Distributed Systems (SEPADS 2006), Madrid, Spain, To Appear,
Feb. 2006.
[2] Kushwaha, D.S. and Misra, A.K.: Cognitive Complexity
Measure of Object-Oriented Software – A Practitioners Approach,
5th WSEAS International Conference on Software Engineering,
Parallel and Distributed Systems (SEPADS 2006), Madrid, Spain,
To Appear. Feb. 2006.
[3] Kushwaha D.S.and.Misra A.K: “Robustness Analysis of
Cognitive Information Complexity Measure using Weyuker
Properties”, ACM SIGSOFT Software Engineering Notes, Vol. 31,
No. 7, January 2006.
[4] Kushwaha D.S.and.Misra A.K: “Evaluating Cognitive
Information Complexity Measure ”, 13th Annual IEEE
International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS) To Appear,2006.
[5] Kushwaha, D.S. and Misra, A.K.: A Cognitive Complexity
Metric Suite for Object-Oriented Software”, WSEAS Transactions
on Computers, To Appear, Feb. 2006.
[6] E.P.Doolan, :Experience with Fagans Inspection Method,
Software Practice and Experience. Vol. 2, No. 2, pp. 173-182,
Feb. 1992.
[7] Weyuker, E.,: Evaluating software complexity measure. IEEE
Transaction on Software Engineering Vol. 14(9): 1357-1365,
september1988.
[8] Wang,Y.,: On The Cognitive Informatics Foundations of
Software Engineering, IEEE International Conference on
Cognitive Informatics, 2004.
[9] Wang,Y.,: On The Informatics Laws of Software, IEEE
International Conference on Cognitive Informatics, 2004.
[10] Wang,Y.,: On Cognitive Informatics, Keynote Lecture,
Proceedings of IEEE International Conference on Cognitive
Informatics, 2002, pp. 34 – 42.

ACM SIGSOFT Software Engineering Notes Page 6 March 2006 Volume 31 Number 2

	Cognitive Complexity Metrics and its Impact on Software Reliability Based on Cognitive Software Development Model
	Abstract
	Keywords

	1. Introduction
	2. Cognitive Software Development Model
	Kushwaha and Misra [5] have proposed Cognitive Software Development Model, with emphasis on cognitive aspects. This cognitive model of software development is based on the following broad phenomena:

	3. Reliability
	Table 2: Weights Based on Cognitive Phenomena

	 8. Conclusion
	References

