
Correlations between Internal Software Metrics and Software Dependability in a
Large Population of Small C/C++ Programs

Meine J.P. van der Meulen
Centre for Software Reliability

City University
London EC1V 0HB, UK

Miguel A. Revilla
Department of Applied Mathematics

University of Valladolid
47011 Valladolid, Spain

Abstract

Software metrics are often supposed to give valuable in-
formation for the development of software. In this paper we
focus on several common internal metrics: Lines of Code,
number of comments, Halstead Volume and McCabe’s Cy-
clomatic Complexity. We try to find relations between these
internal software metrics and metrics of software depend-
ability: Probability of Failure on Demand and number of
defects.

The research is done using 59 specifications from a pro-
gramming competition—The Online Judge—on the internet.
Each specification provides us between 111 and 11,495 pro-
grams for our analysis; the total number of programs used
is 71,917. We excluded those programs that consist of a
look-up table.

The results for the Online Judge programs are: (1) there
is a very strong correlation between Lines of Code and Hal-
stead Volume; (2) there is an even stronger correlation be-
tween Lines of Code and McCabe’s Cyclomatic Complex-
ity; (3) none of the internal software metrics makes it pos-
sible to discern correct programs from incorrect ones; (4)
given a specification, there is no correlation between any of
the internal software metrics and the software dependability
metrics.

1 Introduction

Software metrics have been subject of research since the
seventies, and expectations were high that metrics would
exist to help managerial decision making during the soft-
ware lifecycle. Software metrics come in many flavours
(e.g. described by Fenton e.a. in [3]). Essentially any
metric is an attempt to measure or predict some attribute
(internal or external) of some product, process or resource.
Normally, the internal attributes are those that we can di-
rectly measure, and the external ones those that we are inter-

ested in [2]. In this paper we concentrate on a few internal,
product-related software metrics: Lines of Code, number
of comments, Halstead Volume and McCabe’s Cyclomatic
Complexity. We contrast these with two external software
metrics: number of defects and Probability of Failure on
Demand (PFD).

There have been many attempts to use software metrics
in the development of software. Kafura reports that a collec-
tion of software metrics can be used to identify those com-
ponents which contain an unusually high number of errors
or which require significantly more time to code than the
average [5]. In general however, the results have been am-
biguous at least. Fenton, in [1], states: “Specifically, we
conclude that the existing models are incapable of predict-
ing defects accurately using size and complexity metrics
alone. Furthermore, these models offer no coherent expla-
nation of how defect introduction and detection variables
affect defect counts.”

In this paper we investigate which correlations between
internal software metrics and dependability metrics exist by
analysing a very large collection of small C/C++ programs
submitted to the “Online Judge”.

2 The experiment

2.1 The UVa Online Judge

http://acm.uva.es, the “UVa Online Judge”-Website [8],
is an initiative of one of the authors (Revilla). It contains
program specifications for which anyone may submit pro-
grams in C, C++, Java or Pascal intended to implement
them. The correctness of a program is automatically judged
by the “Online Judge”. Most authors submit programs re-
peatedly until one is judged correct. Tenthousands of au-
thors contribute and together they have produced more than
3,000,000 programs for the approximately 1,500 specifica-
tions on the website (as of May 2004, the programs submit-
ted at that date are used in this experiment).

18th IEEE International Symposium on Software Reliability Engineering

1071-9458/07 $25.00 © 2007 IEEE
DOI 10.1109/ISSRE.2007.12

203

18th IEEE International Symposium on Software Reliability Engineering

1071-9458/07 $25.00 © 2007 IEEE
DOI 10.1109/ISSRE.2007.12

203

18th IEEE International Symposium on Software Reliability Engineering

1071-9458/07 $25.00 © 2007 IEEE
DOI 10.1109/ISSRE.2007.12

203

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on March 17, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

(a) LOC

F
re

qu
en

cy

0 50 100 150 200 250

0
20

40
60

80
12

0

(b) Comment Lines

F
re

qu
en

cy
0 5 10 15 20 25 30

0
50

10
0

20
0

(c) Halstead Volume

F
re

qu
en

cy

0 2000 4000 6000 8000

0
20

40
60

80

(d) Cyclomatic Complexity

F
re

qu
en

cy

0 10 20 30 40 50 60 70

0
20

40
60

80
10

0

Figure 1. Histograms of internal software metrics of the correct submissions for the “Unidirectional
TSP”-problem. The vertical axis presents the number of programs.

The program specifications of the Online Judge contain
a short description of the problem, mainly in natural lan-
guage, and some example input and output. The formalism
of the specifications differs from specification to specifica-
tion, but most are more or less informal.

Note that we do not use the test results of the Online
Judge, except that we only use those programs that the On-
line Judge can run, see Section 2.2. We test the programs
ourselves for determining the external metric PFD as ex-
plained in Section 3.2.

2.2 Selection of specifications and pro-
grams

We selected 59 specification from the Online Judge from
different domains: graph theory, string operations, mathe-
matical puzzles, etc. To enable statistical analysis, we se-
lected specifications for which many submissions existed.
From all the programs submitted to the Online Judge for
these 59 specifications, we use:

Programs running under the Online Judge. We only
use those programs that the Online Judge can execute, i.e.
the Online Judge was able to compile the program, was able
to run it, and the program runs using prescribed time and
memory resources. This first filter saves us much time, and
also protects us from malicious programs like fork bombs.

Programs in C or C++. We only chose programs in
C or C++, because our tools calculate the internal metrics
for these programming languages. Apart from this practi-
cal reason, mixing programming languages in this research
might invalidate the results, or at least complicate their in-
terpretation.

Programs that succeed for at least one demand. We
excluded the completely incorrect submissions, because
there is obviously something wrong with these in a way

that is outside our scope (these are often submissions to
the wrong specification, or apply incorrect formatting to the
output).

First submission of each author. We only used one pro-
gram submitted by each author and discard all other submis-
sions (except for the determination of the number of defects,
see Section 3.2). Subsequent submissions have comparable
fault behaviour and this dependence between submissions
would invalidate the statistical analysis.

Programs smaller than 40kB. A manipulation of the
data we allowed ourselves is that we remove those programs
from the analysis that have a filesize over 40kB. This is the
maximum size allowed by the Online Judge, but was not
enforced for a small period of time, and during this time
some authors managed to submit programs exceeding this
limit. Imposing this restriction does therefore only enforce
a restraint that already in principle existed.

No look-up tables. We also disregarded those programs
that consist of look-up tables, because their software metrics
are completely different (the Halstead Volume is in general
more than ten times the average for all programs written to
a specification, thus completely dominating statistical anal-
ysis). These programs are very easily distinguishable from
others, because they combine a very high Halstead Volume
with a very low Cyclomatic Complexity. In rare cases a
look-up table has a very high Cyclomatic Complexity, more
than a hundred; in these cases the table is programmed with
if-then-else statements. We deleted these programs manu-
ally from the analysis. In total 314 of the 41,685 remaining
correct programs (0.75%), and 132 of the 30,232 remaining
incorrect programs (0.43%) were disregarded.

The total number of submissions to the 59 specifications
used in our analyses was 71,917, on average 1,219 per spec-
ification.

204204204

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on March 17, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

C
om

m
en

tL
in

es

−1.0 −0.5 0.0 0.5 1.0

0
5

10
15

20
25

30
mean: 0.29
sd: 0.17

V
ol

um
e

−1.0 −0.5 0.0 0.5 1.0

0
5

10
15

20
25

30

mean: 0.82
sd: 0.11

−1.0 −0.5 0.0 0.5 1.0
0

5
10

15
20

25
30

mean: 0.28
sd: 0.18

C
C

−1.0 −0.5 0.0 0.5 1.0

0
5

10
15

20
25

30

mean: 0.78
sd: 0.11

−1.0 −0.5 0.0 0.5 1.0

0
5

10
15

20
25

30

mean: 0.23
sd: 0.16

−1.0 −0.5 0.0 0.5 1.0

0
5

10
15

20
25

30

mean: 0.75
sd: 0.17

LOC Comment Volume
Lines

Figure 2. Histograms of the correlations between the various internal software metrics. The vertical
axis depicts the number of specifications.

3 Measurement of software metrics

3.1 Internal metrics

We automatically measured the following internal soft-
ware metrics: Lines of Code (LOC), the number of com-
ment lines, the Halstead Volume (Volume) [4], and Mc-
Cabe’s Cyclomatic Complexity (CC) [6]. These four are
very commonly used in the assessment of programs and
many (commercial) tools give the possibility to measure
them. The distributions of these metrics is similar for all
specifications. Figure 1 presents a typical example for one
specification, named “Unidirectional TSP”.

We determine the Cyclomatic Complexity as follows.
We first measure the CC of the main body of the program
and the subroutines and functions separately. We determine
the CC of the entire program by summing the CCs of the
constituent parts.

The Cyclomatic Complexity appears to have a broad

range for every specification, Figure 1(d) gives it for the cor-
rect programs for the specification “Unidirectional TSP”.
The CC goes well beyond 50, and many correct programs
have a CC above 20. This observation is valid for all speci-
fications.

3.2 Dependability metrics

We also measured two external software metrics related
to dependability: the Probability of Failure on Demand
(PFD) and the number of defects (D).

To determine the PFD, we used three different testing
strategies. For some specifications, a complete test is pos-
sible. For other specifications this is not the case, we then
completely tested part of the demand space or we did a ran-
dom test. The number of demands is either 2,500 or 10,000
for all specifications, except for those for which we did
a complete test, in those cases the number of demands is
equal to the number of possible demands.

205205205

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on March 17, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

50 100 150

1000

2000

3000

4000

5000

6000

7000

x

x x
x

xx

x

x

x

x

x

x

x

x

x
x

x
x

x

x

xx

x

x

x

x
x xxx

x

xx

x

x

xx
x

x
x

x

x

x

x

x

x

x

x
x

x

x

x

x

x
x

x

x
x

x

LOC

H
al

st
ea

d
V

ol
um

e

50 100 150

10

20

30

40

x x
xx

x
x

x

x

x
x

x

xx x

x

xx
x

x

x

xx

x

x

xx

x
xx

x

x

xx

xx

xxx

xx

x

x

x
x

x

x

x

xxx

x

x
xx

x

xx

x

x

LOC

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

(a) Halstead Volume (b) Cyclomatic Complexity

Figure 3. Density plots of the LOC/Volume and LOC/CC distribution of all correct programs of all
specifications combined. The x’s are the means for the 59 specifications. The lines are unweighted
regressions of these means. The background of the figure shows a density plot of the Volume-LOC
and CC-LOC pairs of all the programs involved, with every specification having the same weight.

The PFD is the fraction of demands for which the pro-
gram fails, i.e. we assume that every demand is equiprob-
able. This assumption seems to be as good as any other
assumption, and we do not have any indication that it influ-
ences our results.

We determined the number of defects as follows. In our
approach this is only possible for those authors who manage
to submit a correct program (we disregard all submissions
after a first correct submission). We assumed that the num-
ber of defects in this correct submission is zero, and in the
penultimate submission is one. Then, we assess the submis-
sion before the penultimate submission of this author; if its
behaviour is different from that of the penultimate submis-
sion, we add one to the defect count, otherwise we assume
the defect count is the same. We repeat this procedure until
the first submission of the author. The defect count of this
submission is used for the analysis.

4 Correlations between internal software
metrics

For every specification, we determined the correlation
between the internal software metrics. This gives us 59
measurements for every pair of metrics. These are presented
in histograms in Figure 2.

There are a some very strong correlations: CC vs. LOC
(mean=0.78), Halstead Volume vs. CC (0.75), Halstead
Volume vs. LOC (0.82).

The correlations between Comment Lines and
LOC/Volume/CC (mean=0.29, 0.28 and 0.23) are rather
unexpected. They might be explained by assuming that
programmers who write comments, also tend to write more

elaborate code. Writing comments in code for the Online
Judge is completely voluntary.

5 Lines of Code vs. Halstead Volume and Cy-
clomatic Complexity

The correlations in Figure 2 suggest a very strong rela-
tionship between LOC on the one hand, and Volume/CC on
the other. We would like to investigate this a little bit fur-
ther.

We plot the mean Volume and CC of all the specifica-
tions against the mean LOC, see Figure 3. In both cases, the
correlation is very strong (0.97 and 0.95). For the means, we
determined the following regression lines:

V olume = 45 × LOC − 428 (1)

CC = 0.22 × LOC + 1.9 (2)

For CC this can informally be interpreted as: on average,
programmers write a branch in almost every five lines of
C/C++ code.

6 Are internal software metrics different for
incorrect programs?

To discover whether there is a relationship of any of
the internal metrics with correctness of program, we deter-
mined the ratio between the means of the internal metrics of
the correct programs and those of the incorrect programs for
every specification. This gives us 59 measurements for the

206206206

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on March 17, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

(a) Lines of Code

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5

0
5

10
15

20
25

30

mean: 1
sd: 0.2

(b) Comment Lines

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5

0
5

10
15

20
25

30

mean: 1.1
sd: 0.35

(c) Halstead Volume

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5

0
5

10
15

20
25

30

mean: 1
sd: 0.23

(d) Cyclomatic Complexity

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5

0
5

10
15

20
25

30

mean: 1
sd: 0.21

Figure 4. Histograms of the ratio of internal metrics of correct programs and incorrect programs for
59 specifications, for (a) LOC, (b) Comment Lines, (c) Halstead Volume, (d) Cyclomatic Complexity.

four internal metrics, which we depict in histograms in Fig-
ure 4. It appears that although the change in internal metrics
can be large for some specifications, these changes go either
way, and on average the internal metrics are practically the
same for correct and incorrect programs.

Number of Comment Lines. There is no requirement
to insert comments in the code submitted. Beforehand, we
conjectured that the number of comment lines in submis-
sions would correlate with lower PFD (also reported by
Runeson [7]), the rationale being that someone who vol-
untarily adds comments, thinks about the program more
carefully. However, only a small change in this metric was
found, correct programs have on average 10% more com-
ment lines; the spread on the distribution is very large.

Halstead Volume and Cyclomatic Complexity. On av-
erage, the Volume and the CC of correct and incorrect pro-
grams are the same.

7 Correlations between internal metrics and
dependability

We determined the correlation between the internal soft-
ware metrics and the two dependability software metrics.
We depict this information in eight histograms in Figure 5.

Lines of Code. Figure 5 shows that in our experiment
the mean correlation between LOC and number of defects
or PFD is close to zero.

Number of Comment Lines. Figure 5 shows that the
average correlation of the number of comment lines with
the number of defects and PFD is very close to zero. This
adds to our finding in Section 6: although correct programs
have slightly more comment lines, it now appears that the
number of comment lines is not correlated to the number of
defects.

Cyclomatic Complexity and Halstead Volume. In our
experiments, there is no correlation between these metrics
and PFD nor number of defects.

8 Discussion

This research suffers from one major point of criticism:
the programs are not ’real’, they are most probably writ-
ten by students and not by professional programmers. Even
so, we argue that if there is a relationship between one of
these internal software metrics and PFD and number of de-
fects, this relationship would even be stronger if less rigor-
ous programming methods are followed. A higher Cyclo-
matic Complexity is more problematic in a ’trial and error
program’ then in a rigorously developed program and be-
comes irrelevant if the correctness of a program is formally
proved.

Another point of criticism is the size of the programs,
varying between several dozens and several hundreds of
lines of code. This is comparable to the size of subroutines,
and the results should be interpreted at that level. We can
only conjecture that these results are applicable to bigger,
more realistic programs.

In our approach to counting defects, we assume that pro-
grams of the same author that have the same behaviour have
the same number of defects and that the number of defects
removed in one step is one. Both assumptions most prob-
ably lead to underreporting of defects. A possible other
way to measure the number of defects is to simply use the
number of attempts to the first correct submission. This ap-
proach would probably lead to overreporting, assuming that
authors on average remove less than one fault per attempt.
We also tried this approach, and the results are virtually the
same, and for that reason we do not publish these.

9 Conclusion

We analysed the relations between various internal and
external software metrics in a large collection of C/C++ pro-
grams submitted to a programming competition, the Online
Judge.

207207207

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on March 17, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

PF
D −1.0 −0.5 0.0 0.5 1.0

0
5

10
20

30

mean: −0.0039
sd: 0.045

−1.0 −0.5 0.0 0.5 1.0

0
5

10
20

30

mean: −0.0034
sd: 0.045

−1.0 −0.5 0.0 0.5 1.0

0
5

10
20

30

mean: −0.003
sd: 0.041

−1.0 −0.5 0.0 0.5 1.0

0
5

10
20

30

mean: −0.00055
sd: 0.048

#D
ef

ec
ts

−1.0 −0.5 0.0 0.5 1.0

0
5

10
20

30

mean: 0.02
sd: 0.11

−1.0 −0.5 0.0 0.5 1.0

0
5

10
20

30
mean: 0.015
sd: 0.075

−1.0 −0.5 0.0 0.5 1.0

0
5

10
20

30

mean: 0.013
sd: 0.1

−1.0 −0.5 0.0 0.5 1.0

0
5

10
20

30

mean: 0.015
sd: 0.12

Lines of Code Comment Halstead Cyclomatic
Lines Volume Complexity

Figure 5. Histograms of the correlations between various internal software metrics and PFD or Num-
ber of Defects. The vertical axis reflects the number of specifications.

The experiment shows very strong correlations between
the internal software metrics Lines of Code (LOC), Hal-
stead Volume (V) and Cyclomatic Complexity (CC). We
derived the following relations between the means of their
distributions: V = 45 × LOC − 428 and CC = 0.22 ×
LOC + 1.9. These give the best estimates for V and CC
when LOC is given.

In the experiment, the internal software metrics have no
predictive power with respect to the Probability of Failure
on Demand nor the number of defects of programs. The
internal metrics are on average the same for correct and in-
correct programs.

Acknowledgement

This work was supported in part by the U.K. Engineer-
ing and Physical Sciences Research Council via the In-
terdisciplinary Research Collaboration on the Dependabil-
ity of Computer Based Systems (DIRC), and via the Di-
versity with Off-The-Shelf Components (DOTS) project,
GR/N23912.

References

[1] N.E. Fenton and M. Neill. A critique of software de-
fect prediction models. IEEE Transactions on Software
Engineering, SE-25(5):675–89, 1999.

[2] N.E. Fenton and M. Neill. Software metrics: Roadmap.
In Proceedings of the Conference on The Future of Soft-
ware Engineering, Limerick, Ireland, pages 357–70,
2000.

[3] N.E. Fenton and S.L. Pfleeger. Software Metrics:
A Rigourous and Practical Approach. International
Thomson Computer Press, 1996.

[4] M.H. Halstead. Elements of Software Science. Elsevier
North-Holland, New York, 1977.

[5] D. Kafura and J. Canning. A validation of software
metrics using many metrics and two resources. In Pro-
ceedings 8th International Conference on Software En-
gineering, London, pages 378–85, 1985.

[6] T.J. McCabe. A complexity measure. IEEE Trans-
actions on Software Engineering, SE-2(4), December
1976.

[7] P. Runeson, M. Holmstedt Jöhnsson, and F. Scheja. Are
found defects an indicator of software correctness? an
investigation in a controlled case study. In The 15th
IEEE International Symposium of Software Reliability
Engineering, 2–5 November 2004, St. Malo, France,
pages 91–100, 2004.

[8] S. Skiena and M. Revilla. Programming Challenges.
Springer Verlag, March 2003.

208208208

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on March 17, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

