
Scott Dick
Department of Electrical & Computer Engineering

University of Alberta
Edmonton, AB, Canada

dick@ee.ualberta.ca

Abraham Kandel
Department of Computer Science & Engineering

University of South Florida
Tampa, FL, USA

kandel@csee.usf.edu

ABSTRACT- We investigate the use of fuzzy clustering for the
analysis of software metrics databases. Software metrics are
collected at various points during software development, in
order to monitor and control the quality of a software product.
We use fuzzy clustering to examine three collections of software
metrics. This is one of the very few attempts to use unsupervised
learning in the software metrics domain, even though
unsupervised learning seems more appropriate for this
application domain. Some characteristics of this application
domain that have significant implications for machine learning
are highlighted and discussed. Our results illustrate how
unsupervised learning can he used in software quality control.

Keywords: Fuzzy clustering, machine learning, software
metrics, software quality, unsupervised learning.’

I. INTRODUCTION

Software systems permeate every aspect of our lives, and
are a critical part of the North American economy. They are
the most complex technological systems man has ever
constructed (up to IOzo states in a large system [I]), and the
least reliable [2]. Software developers attempt to monitor and
improve the quality of the software systems they are creating
by collecting software metrics at various stages of the
software development process. These metrics are then used to
guide the allocation of additional development resources
towards software modules that present significant
development risks.

Each software metric quantifies some aspect of a
program’s source code. Simple counting metrics such as the
number of lines of source code, or Halstead’s software
science metrics [3], simply count how many “things” there
are in a program, on the assumption that the more “things”
are present in a program, the more opportunity exists for
errors to occur. More elaborate metrics such as McCabe’s
cyclomatic complexity [4], or the average nesting level of
statements in a program (the bandwidth [5]) , attempt to
describe the complexity of a program. However, all of these
metrics tend to be strongly correlated both to the number of
failures in a module, and to each other, a phenomenon known

Fuzzy Clustering of Software Metrics

0-7803-7810-5/03617.00 W O 0 3 IEEE 642 The IEEE International Conference on Fuzzy Systems

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada under grant no.
PGSB222631-1999, and by the National Institute for
Systems Test and Productivity under the USA Space and
Naval Warfare Systems Command grant no. N00039-01-1-
2248.

as multicollinearity [6], [7]. Furthermore, there tend to be
relatively few modules in any given system that are complex
and have a high failure rate. As a result, any database of
software metrics tends to be skewed towards small modules
with a low failure rate. Finally, no one metric or combination
of metrics is an adequate predictor of software quality, in the
sense that a practical regression model can be built from
them. The bigb correlation between software metrics and
failure rates tells us that there is some relationship between
metrics and quality, but there is no theory that lays out a
model form for statistical regression. Thus, any of the
uncountably infinite number of possible models might be a
good candidate, and statistical regression does not work.

With statistical regression models unable to determine a
precise relationship between software metrics and quality,
some authors have turned to data mining technology to find
such relationships. A call for the use of data mining to help in
managing software projects is made in [PI, and some
candidate techniques such as neural networks and decision
trees are discussed. The Goal-Question-Metric technique is
used in [9], in concert with correlation analyses. A “software
mining” approach is described in [IO], in which awk scripts
are used to crawl a reusable component library and extract
software metrics. These metrics are exported to an Oracle
database, where basic statistical moments are computed; the
possibilities for using more advanced techniques are obvious.
Khoshgoftaar et al. [1 I] report on the use of the Knowledge
Discovery in Databases (KDD) framework in a database of
software metrics from a large telecommunications system.
The data mining tool used was the CART decision tree
algorithm; an average classification accuracy of 75% was
obtained in a tenfold cross-validation experiment.

Our main contribution in this paper is a fuzzy cluster
analysis of 3 datasets of software metrics. The fuzzy c-means
algorithm, a powerful and well-known unsupervised leaming
technique [27], is the basis of our work. Unsupervised
leaming algorithms look for pattems in a feature space,
without requiring the correct classification of points in that
feature space. This is a better fit for the software quality
control problem than supervised learning algorithms, which
require the correct classification of points in feature space as
do statistical regression techniques. In the software quality
control problem, each point in feature space is a module, and
the correct classification of a point is the number of failures
associated with that module. Clearly, this failure data will not
be available early in the development process, but the
module’s features (i.e. metric values) will he. These features

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

mailto:kandel@csee.usf.edu

can be used in a Pareto analysis; the modules with the highest
metric values will receive extra development resources, as
these will have the highest level of risk associated with them.
Previous machine learning approaches to software metrics
analysis have almost all employed supervised learning
approaches (see [I 11 - [16]). We suspect that fuzzy clustering
would be a particularly effective tool in this area because
there is no sharp dichotomy between low- and high-risk
modules. There is instead a continuous transition from
metrics and failure rates that indicate low risk to ones that
indicate high risk. There was one previous attempt to use
fuzzy clustering in this domain, involving the fuzzy
subtractive clustering algorithm [17]. The problem with fuzzy
subtractive clustering is that the expected characteristics of a
cluster must be defined apriori.

The remainder of this paper is organized as follows. In
Section two, we describe our three datasets and the previous
work involving these datasets. In Section three, we present
our fuzzy cluster analysis, and we offer a summary and
discussion of future work in Section four.

11. SOFTWARE METRICS DATASETS

The datasets we examine were collected in the course of two
Master’s theses at the University of Wisconsin-Milwaukee.
The MIS dataset was collected by Lind in [18], and widely
disseminated in [19]. The datasets we have labeled ‘OOSoPt’
and ‘ProcSoft’ were collected by Devilhiss in [20]. For the
reader’s convenience, we will review the known
cbaracterisitics of these three datasets.

A . The MIS Dataset

The MIS dataset consists of 390 records, each representing
one module sampled from a commercial medical imaging
system with a total of 4,500 modules. 11 software metrics are
collected for each module, along with the numher of changes
made to each module, as determined by the number of
problem reports on file for that module. Lind [I81 assumes
that the number of changes represents the numher of failures
in a module, but this assumption was not verified. The
measures used in this dataset are:

1. Lines of source code
2. Executable lines
3. Total characters
4. Lines of comments
5; Comment characters
6. Code characters
7. Halstead’s N [3]
8. Halstead’s Nb [3]
9. Jensen’s Nf [21]
10. McCabe’s cyclomatic complexity [4]
11. Bandwidth [5]

Lind conducted a correlation analysis of this dataset, using
Pearson’s correlation coefficient to measure the relationship
between each metric and the number of changes per module.
All metrics save the Bandwidth showed a strong positive
correlation (all correlation coefficients above 0.6) between
the metric and the number of changes per module. The
Bandwidth metric had a correlation of just 0.26 with the
number of changes per module. In addition to this thesis,
Lind and Vairavan summarized these results in [7].

Two other works also analyzed the MIS dataset. In [22],
Principal Components Analysis (PCA) [23] was used to
reduce the number of features in the MIS dataset from 11 to
2. We have also used PCA in this dataset, and found that the
number of principal components was 1 instead of 2. A key
difference is that, in [22], the rule used to choose the number
of principal dimensions was to select dimensions associated
with any eigenvalue > 1. In contrast, [23] recommends that
the eigenvalues be ranked, and a cut-off point be selected
when there is a significant drop from one eigenvalue to the
next in this ranking. Finally, the authors in [I21 use a neural
network to discriminate between low and high risk modules.
A low risk module was one with zero or one changes, and a
high risk module was one with ten or more changes. Those
modules having between 2 and 9 faults were discarded.

E. The ProcSoji and OOSoJ2 Datasets

The two remaining datasets were collected by DeVilbiss
in [20]. These datasets are made up of 11 software metrics,
collected from operator display applications. The first of
these, ProcSoft, was programmed using structured
programming and contains 422 modules. The second,
OOSoft, was programmed using object-oriented techniques.
A selection of 562 methods were analyzed, which implement
the same functionality as the application underlying ProcSoft.
Each method was treated as a module. The metrics collected
in these datasets are:

1. n l -number of unique operators [3]
2. n2 - number of unique operands [3]
3. NI -number of operators [3]
4. N2 -number of operands [3]
5. Halstead’s N [3]
6. Halstead’s Nh [3]
7. Jensen’s Nf [21]
8.
9. VG2 -enhanced McCabe’s complexity
10. Lines of source code (LOC)
11. Comments (CMT)

VGI - McCabe’s complexity [4]

DeVilbiss examined the linear correlations between each
metric in the individual datasets. In the ProcSoft dataset, he
reports that all the metrics correlated very strongly with each
other, with the exception of CMT, which correlated well with
only the LOC. In the OOSoft dataset, correlation values tend
to be lower, as do the overall metric values. Change counts

643 The IEEE International Conference on Fuzzy Systems

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

were not collected in this study, and so no further information
about the actual quality of the software systems is available.
This is representative of the actual software quality control
problem, and so we will use these datasets to study how our
fuzzy clustering results might he applied in a practical setting.

Separation indexes have their global optimum at 2 clusters,
while the optimal value of the average SSE is at 7 clusters.
The CS index and the Separation index also have local
extrema at 7 clusters. Since the average SSE makes use of the
true classification of each record, and since the CS index and
Separation index both provide some additional support for 7
clusters, we have decided to accept 7 clusters as the correct
value for this dataset.

In Table 2, we present a statistical characterization of the
In this section, we describe Ow fuzzy ch&r analysis. The change counts in each cluster. We have first hardened the

fuzzy clustering technique we have used is the fuzzy c-means fuzzy clusters in classes using the method of maximum
algorithm, as implemented in MATLABE' 6.0, using a membership [27]. We determined the minimum, maximum,
fuzzifier exponent of 2.0, and a minimal improvement of mean, median and standard deviation of the number of
0.00001. The fuzzy c-means algorithm requires the number of changes per module in each class, along with the number of
clusters to be determined apriori; in keeping with established records in each we have presented the classes in
technique, we have repeated our fuzzy clustering increasing order of the mean number of changes per module.
experiments, varying the expected number of clusten in each As the reader will note, there is extensive overlap between
experiment. Cluster validity meaics [24l, [251 are then used the classes in the change dimension. We consider this to be
to determine which of these experiments results in the 'best' evidence that there is no crisp dividing line between low and
fuzzy P=tition, and is therefore the correct n u h e r of high-risk modules in a software system. We also wish to
clusters. In the MIS dataset, where we actually have a correct point out two important charactefistics in this table. F&
number of changes Per module, we also use a prediction error there is extensive skewness, both within each class and in the
as a cluster validity metric. This prediction error was distribution of points between classes. The number of records
computed using a tenfold cross-validation technique. in each class is monotonic decreasing with respect to the

average number of changes, and the median number of
A. The MSDataset changes is always less than the mean. Second, the variance is

monotonic increasing with the mean. This indicates that the
classes with the smallest number of examples also have the
highest variance, which is a significant complication for
machine learning algorithms.

111. Fuzzy CLUSTER ANALYSIS

In Ow experiments, we a ~ ~ o w e d the "her of clusters in
this dataset to range from 2 to 10. In Table 1, we Present the
cluster validity metrics for each of the resulting fuzzy
partitions. The cluster validity metrics we have used are the
compactness & separation of clusters (CS index) [24], a fuzzy
separation index [E], and a prediction error obtained from a
tenfold cross-validation technique. For the latter, we clustered
the dataset using 9/10 of the dataset, and computed the sum
of squared error (SSE) for the remaining 1/10 using the fuzzy
nearest prototype algorithm [26]. We used the average SSE
over all ten repetitions of the tenfold cross-validation as a
cluster validity metric.

TABLE 2: CLASS CHARACTERISTICS IN MIS

This kind of cluster analysis will be most useful in a
Pareto analysis, in which the modules with the highest metric
values are singled out for extra development effort. In the
context of our fuzzy cluster analysis, the modules belonging
to the classes with the highest metric values should be singled
out for extra development. We therefore want to find a way to
order the classes that does not depend on knowing the change
counts. In Table 3, we examine the ordering of cluster centers
for each metric. The second column is the cluster IDS, in
increasing order of the cluster centers for that metric alone.
What we notice is that the cluster centers in each dimension
tum out to be ordered in the exact same way as the mean
values of the change coUnts per class. Furthermore, the
dataset is almost linear in nature; PCA indicates that there is
only one principal dimension, and so this is a total ordering of

In Table 1, maximum values of the CS index indicate the
best partition, while minimal values of the Separation index
and the average SSE indicate the hest one. Both the CS and

644 The IEEE International Conference on Fuzzy Systems

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

the classes. Thus, a Pareto analysis in this dataset can be 8-partition, the distribution of records is skewed towards
conducted by determining the ordering of cluster centers for smaller clusters. We thus conclude that the 8-partition is
each dimension, and selecting the largest classes from this correct for this dataset. A PCA analysis again showed that the
ordering. In the next section, we will use this technique to dataset is almost linear, having only one principal dimension,
analyze the OOSoA and ProcSoft datasets, and attempt to while Table 6 indicates that there is indeed a homogenous
determine if this idea of using cluster orderings in individual ordering of cluster centers across all of the features. Thus, our
dimensions can be applied in other datasets as well. cluster-based Pareto analysis does indeed work in the

ProcSoft dataset.
TABLE 3: ORDERING OF CLUSTER CENTERS IN MIS

Feature 1 Ordering of Classes
Lines of code I 4, 1 , 6 , 7 , 3 , 2 , 5
Executable lines I 4, 1 ,6 ,7 ,3 ,2 ,5
Total characters I 4, 1 ,6 ,7 ,3 ,2 ,5
Lines of comments I 4, 1 ,6 ,7 ,3 ,2 ,5
Comment characters ! 4, 1 ,6 ,7 ,3 ,2 ,5
Code characters I 4, 1, 6 , 7 , 3 , 2 , 5
Halstead’s N I 4, 1 , 6 , 7 , 3 , 2 , 5
Halstead’s Nh I 4, 1 , 6 , 7 , 3 , 2 , 5
Jensen’s Nf I 4, 1 , 6 , 7 , 3 , 2 , 5
McCabe’s complexity I 4, 1, 6 7 , 3,2, 5
Bandwidth I 4, 1 ,6 ,7 ,3 ,2 ,5

B. ProcSoji and OOSoji Datasets

Since the ProcSoft and OOSoft datasets do not include
change counts, we cannot use our average SSE metric, nor
can we determine if any class ordering we find actually
reflects a quality phenomenon. What we can do is run a PCA
analysis to determine if the datasets are basically linear, and
attempt to find a homogenous ordering of cluster centers by
feature. We begin by presenting the cluster validity metrics
for ProcSoft in Table 4, and OOSoft in Table 5.

TABLE 4: C L U S E R VALlDlrV FOR PROCSOFT

In Table 4, we find that the CS index and Separation index
disagree; the CS index indicates that 2 clusters is the optimal
value, and the Separation index indicates that 8 clusters are
best. In order to decide between these two possibilities, we
looked at the distribution of records between hardened classes
for both partitions, and the ordering of cluster centers in each
partition (see Table 6). In the 2-partition, we find that the
classes are skewed high; class 2, which has the higher metric
values, has 363 records, versus 59 records in class 1. This is
in contrast to the overall dataset, which is skewed low. In the

TABLE 5: CLUSTER VALlDrrt FOR OOSOFT

Clusters CS Index
1.02 * 10 229.29
3.11 * 10 184.21
3.11 * 10 95.89

5 8.93
h I 4 9 5 * i n 4 I 1 6 i n /I 17.99

17.29
6.46 * 10 16.18

10 6.46 * 10 17.86

TASLE 6 ORDEWNOOF CLUSTE4R CENTERSlN PROCSOFT

In the OOSoft dataset, both the CS and Separation
indexes indicate that 5 clusters is the optimal partition for this
cluster. Again, a PCA analysis shows that the dataset is
almost linear, with only one principal dimension. However,
as can be seen in Table 7, there is no homogenous ordering of
cluster centers by attribute; our technique of finding an
ordering for each individual cluster breaks down in this
dataset. We believe that the reason for this lies in the
differences between ProcSoft and OOSoft. Both datasets
were extracted from similar applications, and the same
metrics were recorded for each. However, DeVilbiss [20]
noticed that in the OOSoft dataset, metric values were
generally lower than in ProcSoft. An analysis showed that
much of the complexity in the ProcSoft modules was due to
the use of SWITCH statements to determine the data type of
arguments to functions. Plainly, such constructs are not
needed in an object-oriented programming language. The
removal of the SWITCH statements greatly simplified the
program, although the lines of code underwent a smaller
relative change. The usage of comments was also

645 The IEEE International Conference on Fuzzy Systems

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

significantly different than in the ProcSofi dataset. Examining
Table 7, we see that it is precisely these two metrics that
deviate from the ordering pattem set down by all of the other
metrics. We also suspect that methods in an object-oriented
program are not a natural target for software metrics
developed for procedural-oriented programs; a new analysis
using object-oriented metrics (such as the CK metrics [28])
would be a valuable exercise.

TABLE 1 ORDERINGOF CLUSTFR CENTERS I OOSOFI

Feature 1 Cluster Centers
Halstead’s n l I 1,3,2,4,5

IV. CONCLUSIONS

Unsupervised learning is a more natural fit to the software
development process than supervised learning. In this work,
we used fwzy c-means clustering for the first time ever in the
software metrics domain, and showed how the clusters we
detected can be used in a Pareto analysis based on clusters of
modules instead of individual modules. The Pareto principle
tells us that 80% of software faults will be located in just 20%
of the modules. The power of this technique is that we will
select modules for additional work that would normally not
be found by ranking individual modules. We have been able
to replicate this analysis for the ProcSoft dataset, which also
comes from a procedme-oriented program. However, we
were not able to duplicate these results on the OOSofi
dataset, which comes from an object-oriented program. One
&future study would be to use object-oriented metrics for
object-oriented programs, and see if they behave in the linear
fashion we observed in MIS and ProcSoft.

We can also offer two further points concerning the MIS
dataset. Firstly, the dataset seems to be underdetermined. The
divergence of the general cluster validity metrics from the
average SSE shows that the clusters having the classically
“best” quality do not actually represent this dataset. Secondly,
in addition to the familiar problem of skewness, our analysis
has revealed another unwelcome statistical quantity:
variance. Our experiments sbowed that the mean and
variance of changes per module increase monotonically with
each other. The classes we are most interested in, the ones
with the highest mean number of changes, were also the
classes with the highest variance and the smallest number of
examples. This will complicate machine learning in general,

and be a serious problem for function approximation
algorithms or statistical regression. This is a major challenge
in the software metrics domain. Future work in this are will
involve using resampling techniques to homogenize the class
distribution in software metrics datasets, thus diminishing the
problem of skewness.

ACKNOWLEDGMENTS

Our thanks to Dr. Vairavan of the University of Wisconsin-
Milwaukee for providing the datasets in this paper.

REFERENCES

[I] Friedman, M.A.; Voas, J.M., Sofhvare Assessment:
Reliability, Sa/ety, Testability, New York: John Wiley &
Sons, Inc., 1995.
[2] Jones, C., So/hvare Assessments, Benchmarks8 and Best
Practices, New York: Addison-Wesley, 2000.
[3] Halstead, M., Elements ofSofhvare Science, New York
Elsevier, 1977.
[4] McCabe, T.J., “A Complexity Measure,” IEEE Tram.
So$. Eng., vol. 2 no. 4, Dec. 1976, pp. 308-20
[5] Peters, J.F.; Pedrycz, W., Sofhvare Engineering: An
Engineering Approach, New York: John Wiley & Sons,
2000.
[6] Ehert, C.; Baisch, E., “Knowledge-based techniques for
software quality management,” in W. Pedrycz, W.; Peters,
J.F., E&., Computational Intelligence in S o f t a r e
Engineering, River Edge, NJ: World Scientific, 1998, pp.
295-320
[7] Lind, R.K.; Vairavan, K., “An Experimental Investigation
of S o h a r e Metrics and Their Relationship to Software
Development Effort,” IEEE Trans. Soft. Eng., vol. 15 no. 5 ,
May 1989, pp. 649-653
[8] Paul, R.A.; Kunii, T.L.; Shinagawa, Y.; Khan, M.F.,
“Software metrics knowledge and databases for project
management,” IEEE Trans. Knowledge & Data Eng., vol. 11
no. 1, Jan./Feb. 1999, pp. 255-264.
[9] Mendonca, M.G.; Basili, V.R.; Bhandari, 1,s.; Dawson, J.,
“An approach to improving existing measurement
frameworks,” IBBMSystems Journal, vol. 37 no. 4, 1998, pp.
484-501.
[IO] McLeIIan, S.; Roesler, A.; Fei, Z.; Chandran, S.;
Spinuzzi, C., “Experience ming web-based shotgun measures
for large-system characterization and improvement,” IEEE
Trans. Soft. Eng., vol. 24 no. 4, April 1998, pp. 268-277.
[I l l Khoshgoftaar, T.M.; Allen, E.B.; Jones, W.D.;
Hudepohl, J.P., “Data Mining for Predictors of Soitware
Quality,” Int. J. So$. Eng. & Knowledge Eng., vol. 9 no. 5 ,
1999, pp. 547-563.
[I21 Karunanithi, N.; Malaiya, Y.K. “Neural Networks for
Software Reliability Engineering,” in M.R. Lyu, E d , ,
Handbook of Sofhvare Reliability Engineering, New York
McGraw-Hill, 1996.

646 The IEEE lntemational Conference on Fuzzy SyOtems

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

[I31 Gray, A.R., “A simulation-based comparison of
empirical modeling techniques for software metric models of
development effort,” in Proceedings, 6Ih Int Con$ Neural
Information Processing, 1999, pp. 526-531.
[I41 Mertoguno, J.S.; Paul, R,; Bourbakis, N.G.;
Ramamoorthy, C.V., “A Neuro-Expert System for the
Prediction of Software Metrics,” Eng. App. Artificial
Infelligence, vol. 9 no. 2, 1996, pp. 153-161.
[15] Khoshgoftaar, T.M.; Evett, M.P.; Allen, E.B.; Chien, P.-
D.,“‘An application of genetic programming to software
quality prediction,” in Pedrycz, W.; Peters, J.F., Eds.,
Compufational Infelligence in Sofhvare Engineering, River
Edge, NJ: World Scientific, 1998, pp. 176-195.
[I61 Khoshgoftaar, T.M.; Allen, E.B.; Jones, W.D.;
Hudepohl, J.P., “Classification-tree models of software-
quality over multiple releases,” IEEE Trans. Rel., vol. 49 no.
I , March 2000, pp. 4-1 1
[17] Yuan, X.; Khoshgoftaar, T.M.; Allen, E.B.; Ganesan, K.,
“An application of fuzzy clustering to software quality
prediction,” in Proceedings, Yd IEEE Symp. App. Specific
Soft. Eng. Tech., pp. 85-90, 2000.
[18] Lind, R.K,“An Experimental Study of Software Metrics
and Their Relationship to Software Errors,” Master’s Thesis,
University of Wisconsin-Milwaukee, 1986.
[I91 Lyu, M.R., “Data and Tool Disk,” in M.R. Lyu, Ed.,
Handbook ofSofhvare Refiabilify Engineering, New York:
McGraw-Hill, 1996.
[20] DeVilbiss, W., “A Comparison of Software Complexity
of Programs Developed Using Structured Techniques and
Object-Oriented Techniques,” Master’s Thesis, University of
Wisconsin-Milwaukee, 1993.
[21] Jensen, H.A.: Vairavan, K., “An Experimental Study of
Software Metrics for Real-Time Software,” IEEE Trans. on
Soft. Eng., vol. 11, no. 2, Feb. 1985, pp. 231-234.

[22] Munson, J.C.; Khoshgoftaar, T.M., “Software Metrics
for Reliability Assessment,” in M.R. Lyu, Ed., Handbook of
Sof tare Reliabilify Engineering, New York: McGraw-Hill,
1996.
[23] Duda, R.O.; Hart, P.E.; Stork, D.G., Paffern
Class$cafion, 2d Edition, New York: John Wiley & Sons,
Inc., 2001.
[24] Dum, J.C., “A Fuzzy Relative of the ISODATA Process
and its Use in Detecting Compact Well-Separated Clusters,”
J. Cybernetics, vol. 3 no. 3, 1973, pp. 32-57. Reprinted in
Bezdek, J.C.; Pal, S.K., Fuzzy Models for Pattern
Recognition: Methods that Search for Sfuctures in Data,
Piscataway, NJ: IEEE Press, 1992, pp. 82-101.
[25] Xie, X.L.; Beni, G., “A Validity Measure for Fuzzy
Clustering,” IEEE Trans. Puff. Analysis &Mach. Inf., vol. 13
no. 8, August 1991, 841-847. Reprinted in Bezdek, J.C.; Pal,
S.K., Fuzzy Models for Pattern Recognifion: Method that
Search for Structures in Data, Piscataway, NJ: IEEE Press,
1992,pp. 219-225.
[26] Keller, J.M.; Gray, M.R.; Givens, J.A., Jr., “A Fuzzy K-
Nearest Neighbor Algorithm,” IEEE Trans. on Sysf, Man and
Cyb., vol. 15 no. 4, JuVAug 1985, pp. 580-585. Reprinted in
Bezdek, J.C.; Pal, S.K. Fuzzy Modelsfor Patfern
Recognition: Mefhods that Searchfor Structures in Dafa,
Piscataway, NJ: IEEE Press, 1992, pp. 258-263.
[27] Hoppner, F.; Klawonn, F.; Kruse, R.; Runkler, T., Fuzzy
Clusfer Analysis: Methods for Classifcafion, Data Analysis
and Image Recognition, New York: John Wiley & Sons, Inc.,
1999.
[28] Chidamher, S.; Kemerer, C.F., “A Metrics Suite for
Object Oriented Design”, IEEE Trans. Soft Eng., vol. 20, no.
6, June 1994, pp. 476-493

647 The IEEE International Conference on Fuzzy Systems

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

