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ABSTRACT- We investigate the use of fuzzy clustering for the 
analysis of software metrics databases. Software metrics are 
collected at various points during software development, in 
order to monitor and control the quality of a software product. 
We use fuzzy clustering to examine three collections of software 
metrics. This is one of the very few attempts to use unsupervised 
learning in the software metrics domain, even though 
unsupervised learning seems more appropriate for this 
application domain. Some characteristics of this application 
domain that have significant implications for machine learning 
are highlighted and discussed. Our results illustrate how 
unsupervised learning can he used in software quality control. 

Keywords: Fuzzy clustering, machine learning, software 
metrics, software quality, unsupervised learning.’ 

I. INTRODUCTION 

Software systems permeate every aspect of our lives, and 
are a critical part of the North American economy. They are 
the most complex technological systems man has ever 
constructed (up to IOzo states in a large system [I]), and the 
least reliable [2]. Software developers attempt to monitor and 
improve the quality of the software systems they are creating 
by collecting software metrics at various stages of the 
software development process. These metrics are then used to 
guide the allocation of additional development resources 
towards software modules that present significant 
development risks. 

Each software metric quantifies some aspect of a 
program’s source code. Simple counting metrics such as the 
number of lines of source code, or Halstead’s software 
science metrics [3], simply count how many “things” there 
are in a program, on the assumption that the more “things” 
are present in a program, the more opportunity exists for 
errors to occur. More elaborate metrics such as McCabe’s 
cyclomatic complexity [4], or the average nesting level of 
statements in a program (the bandwidth [5] ) ,  attempt to 
describe the complexity of a program. However, all of these 
metrics tend to be strongly correlated both to the number of 
failures in a module, and to each other, a phenomenon known 
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as multicollinearity [6], [7]. Furthermore, there tend to be 
relatively few modules in any given system that are complex 
and have a high failure rate. As a result, any database of 
software metrics tends to be skewed towards small modules 
with a low failure rate. Finally, no one metric or combination 
of metrics is an adequate predictor of software quality, in the 
sense that a practical regression model can be built from 
them. The bigb correlation between software metrics and 
failure rates tells us that there is some relationship between 
metrics and quality, but there is no theory that lays out a 
model form for statistical regression. Thus, any of the 
uncountably infinite number of possible models might be a 
good candidate, and statistical regression does not work. 

With statistical regression models unable to determine a 
precise relationship between software metrics and quality, 
some authors have turned to data mining technology to find 
such relationships. A call for the use of data mining to help in 
managing software projects is made in [PI, and some 
candidate techniques such as neural networks and decision 
trees are discussed. The Goal-Question-Metric technique is 
used in [9], in concert with correlation analyses. A “software 
mining” approach is described in [IO], in which awk scripts 
are used to crawl a reusable component library and extract 
software metrics. These metrics are exported to an Oracle 
database, where basic statistical moments are computed; the 
possibilities for using more advanced techniques are obvious. 
Khoshgoftaar et al. [ 1 I] report on the use of the Knowledge 
Discovery in Databases (KDD) framework in a database of 
software metrics from a large telecommunications system. 
The data mining tool used was the CART decision tree 
algorithm; an average classification accuracy of 75% was 
obtained in a tenfold cross-validation experiment. 

Our main contribution in this paper is a fuzzy cluster 
analysis of 3 datasets of software metrics. The fuzzy c-means 
algorithm, a powerful and well-known unsupervised leaming 
technique [27], is the basis of our work. Unsupervised 
leaming algorithms look for pattems in a feature space, 
without requiring the correct classification of points in that 
feature space. This is a better fit for the software quality 
control problem than supervised learning algorithms, which 
require the correct classification of points in feature space as 
do statistical regression techniques. In the software quality 
control problem, each point in feature space is a module, and 
the correct classification of a point is the number of failures 
associated with that module. Clearly, this failure data will not 
be available early in the development process, but the 
module’s features (i.e. metric values) will he. These features 
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can be used in a Pareto analysis; the modules with the highest 
metric values will receive extra development resources, as 
these will have the highest level of risk associated with them. 
Previous machine learning approaches to software metrics 
analysis have almost all employed supervised learning 
approaches (see [I 11 - [16]). We suspect that fuzzy clustering 
would be a particularly effective tool in this area because 
there is no sharp dichotomy between low- and high-risk 
modules. There is instead a continuous transition from 
metrics and failure rates that indicate low risk to ones that 
indicate high risk. There was one previous attempt to use 
fuzzy clustering in this domain, involving the fuzzy 
subtractive clustering algorithm [17]. The problem with fuzzy 
subtractive clustering is that the expected characteristics of a 
cluster must be defined apriori. 

The remainder of this paper is organized as follows. In 
Section two, we describe our three datasets and the previous 
work involving these datasets. In Section three, we present 
our fuzzy cluster analysis, and we offer a summary and 
discussion of future work in Section four. 

11. SOFTWARE METRICS DATASETS 

The datasets we examine were collected in the course of two 
Master’s theses at the University of Wisconsin-Milwaukee. 
The MIS dataset was collected by Lind in [18], and widely 
disseminated in [19]. The datasets we have labeled ‘OOSoPt’ 
and ‘ProcSoft’ were collected by Devilhiss in [20]. For the 
reader’s convenience, we will review the known 
cbaracterisitics of these three datasets. 

A .  The MIS Dataset 

The MIS dataset consists of 390 records, each representing 
one module sampled from a commercial medical imaging 
system with a total of 4,500 modules. 11 software metrics are 
collected for each module, along with the numher of changes 
made to each module, as determined by the number of 
problem reports on file for that module. Lind [I81 assumes 
that the number of changes represents the numher of failures 
in a module, but this assumption was not verified. The 
measures used in this dataset are: 

1.  Lines of source code 
2. Executable lines 
3. Total characters 
4. Lines of comments 
5; Comment characters 
6. Code characters 
7. Halstead’s N [3] 
8.  Halstead’s Nb [3] 
9. Jensen’s Nf [21] 
10. McCabe’s cyclomatic complexity [4] 
11. Bandwidth [5] 

Lind conducted a correlation analysis of this dataset, using 
Pearson’s correlation coefficient to measure the relationship 
between each metric and the number of changes per module. 
All metrics save the Bandwidth showed a strong positive 
correlation (all correlation coefficients above 0.6) between 
the metric and the number of changes per module. The 
Bandwidth metric had a correlation of just 0.26 with the 
number of changes per module. In addition to this thesis, 
Lind and Vairavan summarized these results in [7]. 

Two other works also analyzed the MIS dataset. In [22], 
Principal Components Analysis (PCA) [23] was used to 
reduce the number of features in the MIS dataset from 11 to 
2. We have also used PCA in this dataset, and found that the 
number of principal components was 1 instead of 2. A key 
difference is that, in [22], the rule used to choose the number 
of principal dimensions was to select dimensions associated 
with any eigenvalue > 1. In contrast, [23] recommends that 
the eigenvalues be ranked, and a cut-off point be selected 
when there is a significant drop from one eigenvalue to the 
next in this ranking. Finally, the authors in [I21 use a neural 
network to discriminate between low and high risk modules. 
A low risk module was one with zero or one changes, and a 
high risk module was one with ten or more changes. Those 
modules having between 2 and 9 faults were discarded. 

E. The ProcSoji and OOSoJ2 Datasets 

The two remaining datasets were collected by DeVilbiss 
in [20]. These datasets are made up of 11 software metrics, 
collected from operator display applications. The first of 
these, ProcSoft, was programmed using structured 
programming and contains 422 modules. The second, 
OOSoft, was programmed using object-oriented techniques. 
A selection of 562 methods were analyzed, which implement 
the same functionality as the application underlying ProcSoft. 
Each method was treated as a module. The metrics collected 
in these datasets are: 

1. n l  -number of unique operators [3] 
2. n2 - number of unique operands [3] 
3. NI -number of operators [3] 
4. N2 -number of operands [3] 
5.  Halstead’s N [3] 
6. Halstead’s Nh [3] 
7. Jensen’s Nf [21] 
8. 
9. VG2 -enhanced McCabe’s complexity 
10. Lines of source code (LOC) 
11. Comments (CMT) 

VGI - McCabe’s complexity [4] 

DeVilbiss examined the linear correlations between each 
metric in the individual datasets. In the ProcSoft dataset, he 
reports that all the metrics correlated very strongly with each 
other, with the exception of CMT, which correlated well with 
only the LOC. In the OOSoft dataset, correlation values tend 
to be lower, as do the overall metric values. Change counts 
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were not collected in this study, and so no further information 
about the actual quality of the software systems is available. 
This is representative of the actual software quality control 
problem, and so we will use these datasets to study how our 
fuzzy clustering results might he applied in a practical setting. 

Separation indexes have their global optimum at 2 clusters, 
while the optimal value of the average SSE is at 7 clusters. 
The CS index and the Separation index also have local 
extrema at 7 clusters. Since the average SSE makes use of the 
true classification of each record, and since the CS index and 
Separation index both provide some additional support for 7 
clusters, we have decided to accept 7 clusters as the correct 
value for this dataset. 

In Table 2, we present a statistical characterization of the 
In this section, we describe Ow fuzzy ch&r analysis. The change counts in each cluster. We have first hardened the 

fuzzy clustering technique we have used is the fuzzy c-means fuzzy clusters in classes using the method of maximum 
algorithm, as implemented in MATLABE' 6.0, using a membership [27]. We determined the minimum, maximum, 
fuzzifier exponent of 2.0, and a minimal improvement of mean, median and standard deviation of the number of 
0.00001. The fuzzy c-means algorithm requires the number of changes per module in each class, along with the number of 
clusters to be determined apriori; in keeping with established records in each we have presented the classes in 
technique, we have repeated our fuzzy clustering increasing order of the mean number of changes per module. 
experiments, varying the expected number of clusten in each As the reader will note, there is extensive overlap between 
experiment. Cluster validity meaics [24l, [251 are then used the classes in the change dimension. We consider this to be 
to determine which of these experiments results in the 'best' evidence that there is no crisp dividing line between low and 
fuzzy P=tition, and is therefore the correct n u h e r  of high-risk modules in a software system. We also wish to 
clusters. In the MIS dataset, where we actually have a correct point out two important charactefistics in this table. F& 
number of changes Per module, we also use a prediction error there is extensive skewness, both within each class and in the 
as a cluster validity metric. This prediction error was distribution of points between classes. The number of records 
computed using a tenfold cross-validation technique. in each class is monotonic decreasing with respect to the 

average number of changes, and the median number of 
A.  The MSDataset changes is always less than the mean. Second, the variance is 

monotonic increasing with the mean. This indicates that the 
classes with the smallest number of examples also have the 
highest variance, which is a significant complication for 
machine learning algorithms. 

111. Fuzzy CLUSTER ANALYSIS 

In Ow experiments, we a ~ ~ o w e d  the "her of clusters in 
this dataset to range from 2 to 10. In Table 1, we Present the 
cluster validity metrics for each of the resulting fuzzy 
partitions. The cluster validity metrics we have used are the 
compactness & separation of clusters (CS index) [24], a fuzzy 
separation index [E], and a prediction error obtained from a 
tenfold cross-validation technique. For the latter, we clustered 
the dataset using 9/10 of the dataset, and computed the sum 
of squared error (SSE) for the remaining 1/10 using the fuzzy 
nearest prototype algorithm [26]. We used the average SSE 
over all ten repetitions of the tenfold cross-validation as a 
cluster validity metric. 

TABLE 2: CLASS CHARACTERISTICS IN MIS 

This kind of cluster analysis will be most useful in a 
Pareto analysis, in which the modules with the highest metric 
values are singled out for extra development effort. In the 
context of our fuzzy cluster analysis, the modules belonging 
to the classes with the highest metric values should be singled 
out for extra development. We therefore want to find a way to 
order the classes that does not depend on knowing the change 
counts. In Table 3, we examine the ordering of cluster centers 
for each metric. The second column is the cluster IDS, in 
increasing order of the cluster centers for that metric alone. 
What we notice is that the cluster centers in each dimension 
tum out to be ordered in the exact same way as the mean 
values of the change coUnts per class. Furthermore, the 
dataset is almost linear in nature; PCA indicates that there is 
only one principal dimension, and so this is a total ordering of 

In Table 1, maximum values of the CS index indicate the 
best partition, while minimal values of the Separation index 
and the average SSE indicate the hest one. Both the CS and 
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the classes. Thus, a Pareto analysis in this dataset can be 8-partition, the distribution of records is skewed towards 
conducted by determining the ordering of cluster centers for smaller clusters. We thus conclude that the 8-partition is 
each dimension, and selecting the largest classes from this correct for this dataset. A PCA analysis again showed that the 
ordering. In the next section, we will use this technique to dataset is almost linear, having only one principal dimension, 
analyze the OOSoA and ProcSoft datasets, and attempt to while Table 6 indicates that there is indeed a homogenous 
determine if this idea of using cluster orderings in individual ordering of cluster centers across all of the features. Thus, our 
dimensions can be applied in other datasets as well. cluster-based Pareto analysis does indeed work in the 

ProcSoft dataset. 
TABLE 3: ORDERING OF CLUSTER CENTERS IN MIS 

Feature 1 Ordering of Classes 
Lines of code I 4, 1 , 6 , 7 , 3 , 2 , 5  
Executable lines I 4, 1 ,6 ,7 ,3 ,2 ,5  
Total characters I 4, 1 ,6 ,7 ,3 ,2 ,5  
Lines of comments I 4, 1 ,6 ,7 ,3 ,2 ,5  
Comment characters ! 4, 1 ,6 ,7 ,3 ,2 ,5  
Code characters I 4, 1, 6 , 7 , 3 , 2 , 5  
Halstead’s N I 4, 1 , 6 , 7 , 3 , 2 , 5  
Halstead’s Nh I 4, 1 , 6 , 7 , 3 , 2 , 5  
Jensen’s Nf I 4, 1 , 6 , 7 , 3 , 2 , 5  
McCabe’s complexity I 4, 1, 6 7 ,  3,2,  5 
Bandwidth I 4, 1 ,6 ,7 ,3 ,2 ,5  

B. ProcSoji and OOSoji Datasets 

Since the ProcSoft and OOSoft datasets do not include 
change counts, we cannot use our average SSE metric, nor 
can we determine if any class ordering we find actually 
reflects a quality phenomenon. What we can do is run a PCA 
analysis to determine if the datasets are basically linear, and 
attempt to find a homogenous ordering of cluster centers by 
feature. We begin by presenting the cluster validity metrics 
for ProcSoft in Table 4, and OOSoft in Table 5. 

TABLE 4: C L U S E R  VALlDlrV FOR PROCSOFT 

In Table 4, we find that the CS index and Separation index 
disagree; the CS index indicates that 2 clusters is the optimal 
value, and the Separation index indicates that 8 clusters are 
best. In order to decide between these two possibilities, we 
looked at the distribution of records between hardened classes 
for both partitions, and the ordering of cluster centers in each 
partition (see Table 6). In the 2-partition, we find that the 
classes are skewed high; class 2, which has the higher metric 
values, has 363 records, versus 59 records in class 1. This is 
in contrast to the overall dataset, which is skewed low. In the 

TABLE 5: CLUSTER VALlDrrt  FOR OOSOFT 

Clusters CS Index 
1.02 * 10 229.29 
3.11 * 10 184.21 
3.11 * 10 95.89 

5 8.93 
h I 4 9 5 * i n 4  I 1 6  i n  /I 17.99 

17.29 
6.46 * 10 16.18 

10 6.46 * 10 17.86 

TASLE 6 ORDEWNOOF CLUSTE4R CENTERSlN PROCSOFT 

In the OOSoft dataset, both the CS and Separation 
indexes indicate that 5 clusters is the optimal partition for this 
cluster. Again, a PCA analysis shows that the dataset is 
almost linear, with only one principal dimension. However, 
as can be seen in Table 7, there is no homogenous ordering of 
cluster centers by attribute; our technique of finding an 
ordering for each individual cluster breaks down in this 
dataset. We believe that the reason for this lies in the 
differences between ProcSoft and OOSoft. Both datasets 
were extracted from similar applications, and the same 
metrics were recorded for each. However, DeVilbiss [20] 
noticed that in the OOSoft dataset, metric values were 
generally lower than in ProcSoft. An analysis showed that 
much of the complexity in the ProcSoft modules was due to 
the use of SWITCH statements to determine the data type of 
arguments to functions. Plainly, such constructs are not 
needed in an object-oriented programming language. The 
removal of the SWITCH statements greatly simplified the 
program, although the lines of code underwent a smaller 
relative change. The usage of comments was also 
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significantly different than in the ProcSofi dataset. Examining 
Table 7, we see that it is precisely these two metrics that 
deviate from the ordering pattem set down by all of the other 
metrics. We also suspect that methods in an object-oriented 
program are not a natural target for software metrics 
developed for procedural-oriented programs; a new analysis 
using object-oriented metrics (such as the CK metrics [28]) 
would be a valuable exercise. 

TABLE 1 ORDERINGOF CLUSTFR CENTERS I OOSOFI 

Feature 1 Cluster Centers 
Halstead’s n l  I 1,3,2,4,5 

IV. CONCLUSIONS 

Unsupervised learning is a more natural fit to the software 
development process than supervised learning. In this work, 
we used fwzy c-means clustering for the first time ever in the 
software metrics domain, and showed how the clusters we 
detected can be used in a Pareto analysis based on clusters of 
modules instead of individual modules. The Pareto principle 
tells us that 80% of software faults will be located in just 20% 
of the modules. The power of this technique is that we will 
select modules for additional work that would normally not 
be found by ranking individual modules. We have been able 
to replicate this analysis for the ProcSoft dataset, which also 
comes from a procedme-oriented program. However, we 
were not able to duplicate these results on the OOSofi 
dataset, which comes from an object-oriented program. One 
&future study would be to use object-oriented metrics for 
object-oriented programs, and see if they behave in the linear 
fashion we observed in MIS and ProcSoft. 

We can also offer two further points concerning the MIS 
dataset. Firstly, the dataset seems to be underdetermined. The 
divergence of the general cluster validity metrics from the 
average SSE shows that the clusters having the classically 
“best” quality do not actually represent this dataset. Secondly, 
in addition to the familiar problem of skewness, our analysis 
has revealed another unwelcome statistical quantity: 
variance. Our experiments sbowed that the mean and 
variance of changes per module increase monotonically with 
each other. The classes we are most interested in, the ones 
with the highest mean number of changes, were also the 
classes with the highest variance and the smallest number of 
examples. This will complicate machine learning in general, 

and be a serious problem for function approximation 
algorithms or statistical regression. This is a major challenge 
in the software metrics domain. Future work in this are will 
involve using resampling techniques to homogenize the class 
distribution in software metrics datasets, thus diminishing the 
problem of skewness. 
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