
COMPUTING

Using Metrics
to Evaluate
Software Svstem

J

Maint ainabilitv
J

In this month’s Computing Practices
we offer a sneak preview of Computer‘s
September issue on software metrics.
Software metrics have been much
criticized in the last few years, some-
times justly but more often unjustly,
because critics misunderstand the
intent behind the technology. Software
complexity metrics, for example, rarely
measure the “inherent complexity“
embedded in software systems, but
they do a very good job of comparing
the relative complexity of one portion of
a system with another. In essence, they
are good modeling tools. Whether they
are also good measuring tools depends
on how consistently and appropriately
they are applied. The two articles
showcased here suggest ways of
applying such metrics.

Our first article, by Don Coleman et
al., sets forth maintainability metrics for
gauging the effect of maintenance
changes in software systems, rank
ordering subsystem complexity, and
comparing the “quality” of two different
systems.

Schneidewind, describes an approach
to validating software quality metrics for
large-scale projects such as the space
shuttle flight software. The proposed
metrics isolate specific quality factors
that let us predict and control software
quality.

Please feel free to contact me di-
rectly about articles you liked, didn’t
like, or would like to see in this section
(oman Qcs.uidaho.edu).

The second article, by Norman

-Paul Oman

Don Coleman and Dan Ash, Hewlett-Packard
Bruce Lowther, Micron Semiconductor
Paul Oman, University of Idaho

ith the maturation of software development practices, software main-
tainability has become one of the most important concerns of the soft-
ware industry. In his classic book on software engineering, Fred Brooks’

claimed, “The total cost of maintaining a widely used program is typically 40 percent
or more of the cost of developing it.” Parikh2 had a more pessimistic view, claiming
that 45 to 60 percent is spent on maintenance. More recently, two recognized ex-
perts, Corbi3 and Yourdon: claimed that software maintainability is one of the ma-
jor challenges for the 1990s.

These statements were validated recently by Dean Morton, executive vice presi-
dent and chief operating officer of Hewlett-Packard, who gave the keynote address
at the 1992 Hewlett-Packard Software Engineering Productivity Conference. Mor-
ton stated that Hewlett-Packard (HP) currently has between 40 and 50 million lines
of code under maintenance and that 60 to 80 percent of research and development
personnel are involved in maintenance activities. He went on to say that 40 to 60
percent of the cost of production is now maintenance expense.

The intent of this article is to demonstrate how automated software maintainabil-
ity analysis can be used to guide software-related decision making. We have applied
metrics-based software maintainability models to 11 industrial software systems and
used the results for fact-finding and process-selection decisions. The results indicate
that automated maintainability assessment can be used to support buy-versus-build de-
cisions, pre- and post-reengineering analysis, subcomponent quality analysis, test re-
source allocation, and the prediction and targeting of defect-prone subcomponents.
Further, the analyses can be conducted at various levels of granularity. At the com-
ponent level, we can use these models to monitor changes to the system as they occur
and to predict fault-prone components. At the file level, we can use them to identify
subsystems that are not well organized and should be targeted for perfective mainte-
nance. The results can also be used to determine when a system should be reengi-
neered. Finally, we can use these models to compare whole systems. Comparing a
known-quality system to a third-party system can provide a basis for deciding whether
to purchase the third-party system or develop a similar system internally.

NlX-9162194/$4.00 0 1994 IEEE COMPUTER

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 26, 2009 at 01:38 from IEEE Xplore. Restrictions apply.

Recent studies in metrics for software
maintainability and quality assessment
have demonstrated that the software’s
characteristics, history, and associated en-
vironment(s) are all useful in measuring
the quality and maintainability of that
software?-7 Hence, measurement of these
characteristics can be incorporated into
software maintainability assessment mod-
els, which can then be applied to evalu-
ate industrial software systems. Successful
models should identify and measure what
most practitioners view as important com-
ponents of software maintainability.

A comDarison
of five models

We recently analyzed five methods for
quantifying software maintainability
from software metrics. The definition,
derivation, and validation of these five
methods has been documented else-
where.7 Only a synopsis of the five meth-
ods is presented here:

Hierarchical multidimensional as-
sessment models view software main-
tainability as a hierarchical structure
of the source code’s attributes6
Polynomial regression models use re-
gression analysis as a tool to explore
the relationship between software
maintainability and software metrics8
An aggregate complexity measure
gauges software maintainability as a
function of entropy.5
Principal components analysis is a sta-
tistical technique to reduce collinear-
ity between commonly used complex-
ity metrics in order to identify and
reduce the number of components
used to construct regression model^.^
Factor analysis is another statistical
technique wherein metrics are or-
thogonalized into unobservable un-
derlying factors, which are then used
to model system maintainabilit~.~

Tests of the models indicate that all
five compute reasonably accurate main-
tainability scores from calculations based
on simple (existing) metrics. All five
models and the validation data were pre-

sented to HP Corporate Engineering
managers in the spring and summer of
1993. At that time it was decided that the
hierarchical multidimensional assess-
ment and the polynomial regression
models would be pursued as simple
mechanisms for maintainability assess-
ment that could be used by maintenance
engineers in a variety of locations. HP
wanted quick, easy-to-calculate indices
that ‘‘line’’ engineers could use at their
desks. The following subsections explain
how these methods were applied to in-
dustrial systems.

HPMAS: A hierarchical multidimen-
sional assessment model. HPMAS is
HP’s software maintainability assessment
system based on a hierarchical organiza-
tion of a set of software metrics. For this
particular type of maintainability prob-
lem, Oman and Hagemeister6 have sug-
gested a hierarchical model dividing
maintainability into three underlying di-
mensions or attributes:

(1) The control structure, which includes
characteristics pertaining to the way

the program or system is decom-
posed into algorithms.

(2) The information structure, which in-
cludes characteristics pertaining to
the choice and use of data structure
and dataflow techniques.

(3) Typography, naming, and comment-
ing, which includes characteristics
pertaining to the typographic layout,
and naming and commenting of code.

We can easily define or identify sepa-
rate metrics that can measure each di-
mension’s characteristics. Once the met-
rics have been defined andlor identified,
an “index of maintainability” for each di-
mension can be defined as a function of
those metrics. Finally, the three dimen-
sion scores can be combined for a total
maintainability index for the system. For
our work, we used existing metrics to cal-
culate a deviation from acceptable ranges
and then used the inverse of that devia-
tion as an index of quality.

Most metrics have an optimum range
of values within which the software is
more easily maintained. A method called
weight and trigger-point-range analysis is

ed into

August 1994

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 26, 2009 at 01:38 from IEEE Xplore. Restrictions apply.

used to quantify maintainability by cal-
culating a “degree of fit” from a table of
acceptable metric ranges. When the met-
ric value falls outside the optimum range,
it indicates that maintainability is lower;
hence, there is a deviation (or penalty)
on the component’s contribution to
maintainability. The optimum range
value, called the trigger point range, re-
flects the “goodness” of the program
style. For example, if the acceptable
range for average lines ofcode (aveLOC)
is between 5 and 75, values falling below
5 and above 75 serve as the trigger points
for what would be classified as poor style.
If the measured average lines of code
value lies within the acceptable range,
there is no penalty. If the metric value
falls outside the trigger point range but is
close to the bounds (trigger points), we
then apply a proportional deviation,
which can run up to 100 percent (the
maximum penalty). The weighted devia-
tion is computed by multiplying the cal-
culated deviation by a weighted value be-
tween zero and one, inclusive. The metric
attributes are combined based on the as-
sumption that the dimensional maintain-
ability is 100 percent (highly maintain-
able); they are then reduced by the
deviation percentage of each metric. Di-
mension maintainability is calculated as

The overall maintainability index is the
product of the three dimensions. Multi-
plying the three dimensions’ maintainabil-
ity gives a lower overall maintainability
than averaging does, which underscores
the fact that deviation in one aspect of
maintainability will hinder other aspects
of the maintenance effort, thus reducing
maintainability of the entire system.

HPMAS was calibrated against HP en-
gineers’ subjective evaluation of 16 soft-
ware systems, as measured by an
abridged version of the AFOTEC (Air
Force Operational Test and Evaluation
Center) software quality assessment in-
~ t r u m e n t . ~ HPMAS maintainability in-
dices range from 0 to 100, with 100 rep-
resenting excellent maintainability.

Polynomial assessment tools. Regres-
sion analysis is a statistical method for
predicting values of one or more response
(dependent) variables from a collection
of predictor (independent) variables. For
purposes of software maintainability as-
sessment, we need to create a polynomial
equation by which a system’s maintain-
ability is expressed as a function of the as-
sociated metric attributes. We have used
this technique to develop a set of polyno-
mial maintainability assessment models8
These models were developed as simple
software maintainability assessment
methods that could be calculated from ex-
isting metrics. Since these models were
intended for use by maintenance practi-
tioners “in the trenches,” the models were
again calibrated to HP engineers’ subjec-
tive evaluation of the software as mea-
sured by the abridged version of the
AFOTEC software quality assessment in-
strument? That is, the independent vari-
ables used in our models were a host of 40
complexity metrics, and the dependent
variable was the (numeric) result of the
abridged AFOTEC survey.

Approximately 50 regression models
were constructed in an attempt to iden-
tify simple models that could be calcu-
lated from existing tools and still be
generic enough to apply to a wide range of
software systems. In spite of the current
research trend away from the use of Hal-
stead metrics, all tests clearly indicated
that Halstead‘s volume and effort metrics
were the best predictors of maintainabil-
ity for the HP test data. The regression
model that seemed most applicable was a
four-metric polynomial based on Hal-
stead’s effort metric and on metrics mea-
suring extended cyclomatic complexity,
lines of code. and number of comments:

Maintainability = 171
- 3.42 x In(aveE)
- 0.23 x aveV(g’)
- 16.2 x ln(aveL0C) + aveCM

where aveE, aveV(g’), aveLOC, and
aveCM are the average effort, extended
V(G), average lines of code, and number
of comments per submodule (function or
procedure) in the software system.

Preliminary results indicated that this
model was too sensitive to large numbers

of comments. That is, large comment
blocks, especially in small modules, un-
duly inflated the resulting maintainabil-
ity indices. To rectify this, we replaced the
aveCM component with percent com-
ments (perCM), and a ceiling function
was placed on the factor to limit its con-
tribution to a maximum value of 50.1°
Also, because there has been much dis-
cussion of the nonmonotonicity of Hal-
stead’s effort metric (it is not a nonde-
creasing function under the concatenation
operation), we reconstructed the model
using Halstead’s volume metric instead.
Thus, the final four-metric polynomial
now used in our work is

Maintainability = 171
-5.2 x ln(aveVol)
-0.23 x ave V(g’)
-16.2 x ln(aveL0C)

+(50 x sin(d2.46 x perCM))

This polynomial has been compared to
the original model using the same vali-
dation data. The average residual be-
tween the effort-based model and the
volume-based model is less than 1.4.

Applying
the models to
industrial software

A software maintainability model is
only useful if it can provide developers
and maintainers in an industrial setting
with more information about the system.
Hence, the data used to test and validate
our models consisted entirely of genuine
industrial systems provided by Hewlett-
Packard and Defense Department con-
tractors. The examples are presented
here to show how these models can aid
software maintainers in their decision
making. The data presented in the fol-
lowing subsections is real and unaltered,
except that proprietary information has
been removed.

Using HPMAS in a prelpostanalysis of
maintenance changes. Over several years
of software maintenance, systems tend to

46 COMPUTER

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 26, 2009 at 01:38 from IEEE Xplore. Restrictions apply.

degrade as the number of “patches” to
them increases. To combat this increase
in entropy, a prelpostanalysis can be used
to ensure that the maintainability of a sys-
tem does not decline after each mainte-
nance modification. To exemplify this, an
existing HP subsystem, written in C for
the Unix platform, was analyzed using
HPMAS prior to perfective maintenance
modification. Once the modification was
complete, the modified subsystem was
analyzed by HPMAS and the results
were compared to determine if there was
any detectable change in the maintain-
ability of the subsystem. Table 1 contains
an overall analysis of the changes made to
the subsystem.

The HPMAS maintainability index in
Table 1 shows that the maintainability of
the subsystem was essentially unchanged
(a 0.4 percent increase) even though the
perfective maintenance changes had ac-
tually increased the complexity of the sys-
tem. Specifically, 149 lines of code, two
modules, and 29 branches were added to
the system. Although the maintenance
engineer denied that functionality in-
creased, a visual inspection of the source
code revealed that increased error check-
ing had, in fact, been added to the code.
For example, the original version of mod-
ule Function-F, shown in section 2 of
Table 2, contained 12 error-screening
checks, while the modified version con-
tained 16 error checks. (Throughout this
discussion, function names have been
changed to protect Hewlett-Packard pro-
prietary information.)

Table 2 contains a module-by-module
comparison of the pre- and post-test
maintainability indices for the subsys-
tem. The table is divided into four sec-
tions to demonstrate the distribution of
maintenance changes. The first section
of the table contains the modules that
were not modified during the mainte-
nance task. The second section contains
modules that were slightly modified but
which retained their original module
names. The third section contains mod-
ules that have been modified and re-
named. (The modules in this section
were matched by visually inspecting the
post-test system to identify any reused
comments, variables, or control flow
used in the pretest system.) The last sec-

August 1994

tion contains modules in the pretest sys-
tem that could not be matched to any
module in the post-test system. (Visual
inspection of the code revealed that the
post-test components contained reused
code from the pretest system, but they
could not be matched to any one post-
test component.) Thus, the last section
represents an area of the program where
the subsystem was repartitioned, result-
ing in a new subsystem organization.

This type of postmaintenance analysis
can provide the maintenance staff with a
wealth of information about the target

system. For example, section 1 of Table 2
consists of unchanged components with
relatively high HPMAS maintainability
scores. If these components remain
unchanged over several maintenance
modifications, they might be considered
for a reusability library. Components in
the second section address the system
goal but have not yet reached the refine-
ment of those in the first section. Their
HPMAS metrics are generally lower than
those in the first section, and they have
changed less than f 5 percent from the
pre- to postanalysis.

Table 1. Comparing pre- and post-test results shows how much maintenance
modification changes a subsystem.

Percent
Pretest Post-test Change

Lines of code 1,086.00 1,235.00 13.4
Number of modules 13.00 15.00 15.4
Total V(g’) 226.00 255.00 12.8
HPMAS maintainability index 88.17 88.61 0.4

Table 2. Module-by-module comparison of pre- and postanalysis results.

Pretest Analysis Post-test Analysis
Section Percent

Name Metric Name Metric Change

Function-A
1 Function-B

Function-C
Function-D

Function-E
2 Function-F

Function-G

Function-H
3 Function-I

FunctionJ
Function-K

Function-L
Function-M

4

93.83
93.82
92.96
84.41

86.24
65.58
88.06

78.41
72.85
67.75
68.83

80.68
78.78

Function-A
Function-B
Function-C
Function-D

Function-E
Function-F
Function-G

Function-H’
Function-I’
Function-J’
Function-K’

Function-N
Function-0
Function-P
Function-Q

93.83 0.0
93.82 0.0
92.96 0.0
84.41 0.0

89.00 3.2
67.27 2.6
85.83 -2.5

83.05 5.9
63.15 -13.3
66.43 -1.9
66.67 -3.1

85.08
80.75
79.68
69.68

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 26, 2009 at 01:38 from IEEE Xplore. Restrictions apply.

System A - 2oo f Highest MI 250

- System 0 - 8 150

-1 00 2 Eli:: 2 -150 -50 -100

c

E o

- 150-
g 100-
g 0-

li! -50-

3 50-

Lowest MI -+

The last two sections contain the most
extensive changes to the subsystem.
Components in these two sections repre-
sent a large burden to the maintainer, es-
sentially representing a repartition of the
problem. This is evidenced by the re-
naming of components, lower HPMAS
metric values, and unmatchable pre- and
post-test components. The maintenance
engineer renamed all of the components
in section 3 (presumably because he
thought the original names did not ade-
quately describe them) and substantively
changed their functionality. Section 4
contains old components that could not
be matched to components in the new
system. They represent the largest bur-
den to the maintenance effort because
(1) the new components are untested, (2)
the structure of the system has changed,
requiring all documentation and dia-
grams for this system to be updated, and
(3) all maintainers who were familiar
with the pretest system are unfamiliar
with the post-test system.

-

Using polynomials to rank-order mod-
ule maintainabgty. To detect differences
in subsystem maintainability, the four-
metric polynomial was applied to a large
third-party software application sold to
HP. The system consists of 236,000 lines
of C source code written for a Unix plat-
form. The software complexity metrics

were calculated on a file-by-file basis, and
a maintainability index was calculated for
each file.

The file-by-file analysis of the 714 files
constituting the software system is shown
in Figure 1. This histogram shows the
maintainability (polynomial) index for
each file, ordered from highest to low-
est. The index for each file is represented
by the top of each vertical bar; for nega-
tive indices, the value is represented by
the bottom of the bar. The maintainabil-
ity analysis for this system showed that
the file maintainability scores (or in-
dices) range from a high of 183 to a low

All components above the 85 main-
tainability index are highly maintainable,
components between 85 and 65 are mod-
erately maintainable, and components
below 65 are “difficult to maintain.” The
dotted line indicates the quality cutoff es-
tablished by Hewlett-Packard at index
level 65.1° Although these three quality
categories are used by HP, they repre-
sent only a good “rule of thumb.”

The figure shows that 364 files, or
roughly 50 percent of the system, fall be-
low the quality-cutoff index, strongly sug-
gesting that this system is difficult to mod-
ify and maintain. Prior to our analysis,
the HP maintenance engineers had stated
that the system was very difficult to main-
tain and modify. Further analysis proved

of - 91.

Table 3. A polynomial comparison of two systems corroborated an informal
evaluation by engineers.

A

that change-prone and defect-prone sub-
system components (files) could be tar-
geted using the ranked order of the main-
tainability indices.

In a subsequent study, a similar analy-
sis was conducted on another third-party
subsystem and compared against a main-
tainability index profile for a proprietary
HP system (an example is shown in the
next subsection). Based on that compar-
ison, HP decided to purchase the third-
party software.

Using polynomials to compare soft-
ware systems. The polynomial models
can also be used to compare whole soft-
ware systems. We analyzed two software
systems that were similar in size, number
of modules, platform, and language (see
Table 3).

The first system, A, is a third-party ac-
quisition that had been difficult to main-
tain. (Again, the names of the two sys-
tems have been changed to protect
proprietary information.) The second
system, B, had been cited in internal
Hewlett-Packard documentation as an
excellent example of state-of-the-art soft-
ware development. The four-metric poly-
nomial model was used to compare the
two systems to see the differences in their
maintainability profiles. HP maintenance
engineers, already experienced with the
systems, were asked to comment on the
maintainability of each system.

The results of the polynomial model
shown in Table 3 corroborate the engi-
neers’ informal evaluation of the two
software systems. The A system yielded
a maintainability index of 89; while
clearly above our acceptability criteria,
it is considerably lower than the 123
maintainability index calculated for sys-
tem B. This corresponds to the mediocre
evaluation A received from the Hewlett-
Packard engineers and the high praise
B received from the engineers working
on that system. We performed a more

~ ~ ~

HP evaluation Low High
Platform Unix Unix

Total LOC 236,275 243,273
Number of modules 3,176 3,097
Overall maintainability index 89 123

Language C C

COMPUTER

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 26, 2009 at 01:38 from IEEE Xplore. Restrictions apply.

Med/um MI
(34.4%)

System A

Low MI

System 13 (96.6%)

Low MI: x e 65
Med MI: 65 5 x e 85
High MI: 85 5 x

Figure 3. Comparison of two systems,
with high-, medium-, and low-mainte-
nance lines of code expressed in per-
centages.

granular analysis by calculating the poly-
nomial on a module-by-module basis.
Figure 2 shows a plot of the ordered re-
sults. The B system (the thick line) con-
sistently scored higher than the A sys-
tem for all but one module. The
significant gap between the two plots ac-
centuates the fact that the A system is
less maintainable.

Figure 3 contains two pie charts show-
ing the distribution of lines of code in the
three maintainability classifications
(high, medium, and low). The upper pie
chart, representing the A system, illus-
trates the nearly equal distribution of
code into the three classifications. The
lower pie chart, representing the B sys-
tem, shows that a significant portion of
this system falls in the high maintainabil-
ity classification. The B system contains
only 15 components, representing 2.8
percent of the lines of code, that fall be-
low the quality cutoff. The A system, on
the other hand, contains 228 components,
representing 33.4 percent of the lines of
code, that fall below the quality cutoff.
Hence, using lines of code to compare the
two systems reveals that although their
overall maintainability index is adequate,
the B system is likely to be much easier to
maintain than the A system. This result
corresponds to the Hewlett-Packard
evaluations.

o date we have conducted an au-
tomated software maintainabil- T ity analysis on 11 software sys-

tems. In each case, the results from our
analysis corresponded to the mainte-
nance engineers’ “intuition” about the
maintainability of the (sub)system com-
ponents. But in every case, the auto-
mated analysis provided additional data
that was useful in supporting or providing
credence for the experts’ opinions.

Our analyses have assisted in buy-ver-
sus-build decisions, targeting subcompo-
nents for perfective maintenance, con-
trolling software quality and entropy over
several versions of the same software,
identifying change-prone subcompo-
nents, and assessing the effects of reengi-
neering efforts.

Software maintainability is going to be
a considerable challenge for many years
to come. The systems being maintained
are becoming increasingly complex, and a
growing proportion of software develop-
ment staff is participating in the mainte-
nance of industrial software systems. Our
results indicate that automated maintain-
ability analysis can be conducted at the
component level, the subsystem level, and
the whole system level to evaluate and
compare software. By examining indus-
trial systems at different levels, a wealth of
information about a system’s maintain-
ability can be obtained. Although these
models are not perfect, they demonstrate
the utility of such models. The point is
that a good model can help maintainers
guide their efforts and provide them with
much needed feedback. Before develop-
ers can claim that they are building main-
tainable systems, there must be some way
to measure maintainability. W

References
1. F.P. Brooks, The Mythical Man-Month:

Essays on Software Engineering, Addi-
son-Wesley, Reading, Mass., 1982.

2. G. Parikh and N. Zvegintzov, Tutorial on
Software Maintenance, IEEE CS Press,
Los Alamitos, Calif., Order No. 453,1983.

3. T. Corbi, “Program Understanding: Chal-
lenge for the 1990s,” IBM Systems J. , Vol.
28, NO. 2,1989, pp. 294-306.

4. E.Yourdon, The Rise and Fall of the Amer-
ican Programmer, Yourdon Press Com-
puting Series, Trenton, N.J., 1992.

5. J. Munson and T. Khoshgoftaar, “The De-
tection of Fault-Prone Programs,” ZEEE
Trans. Software Eng., Vol. 18, No. 5, May
1992, pp. 423-433.

6. P. Oman and J. Hagemeister, “Metrics for
Assessing Software System Maintainabil-
ity,” Proc. Conf Software Maintenance,
IEEE CS Press, Los Alamitos, Calif., Or-
der No. 2980-02T, 1992, pp. 337-344.

7. F. Zhuo et al., “Constructing and Testing
Software Maintainability Assessment
Models,” Proc. First Int’l Software Metrics
Symp., IEEE CS Press, Los Alamitos,
Calif., Order No. 3740-02T, 1993, pp.
61-70.

8. P. Oman and J. Hagemeister, “Construc-
tion and Testing of Polynomials Predict-
ing Software Maintainability,” J. of Sys-
tems and Software, Vol. 24, No. 3, Mar.
1994, pp. 251-266.

9. Software Maintainability - Evaluation
Guide, AFOTEC Pamphlet 800-2 (up-
dated), HQ Air Force Operational Test
and Evaluation Center, Kirkland Air
Force Base, N.M.,Vol. 3,1989.

10. D. Coleman, “Assessing Maintainability,”
Proc. 1992 Software Eng. Productivity
Conf:, Hewlett-Packard, Palo Alto, Calif.,
1992, pp. 525-532.

Don Coleman is a project manager with
Hewlett-Packard Corporate Engineering. He
works in the area of software maintainability
assessment and defect analysis.

Dan Ash is a firmware engineer for Hewlett-
Packard Boise Printer Division. He special-
izes in font technology and embedded systems.

Bruce Lowther is a software engineer at
Micron Semiconductor. He works in object-
oriented development, focusing on software
reusability and software quality. He is a mem-
ber of the IEEE Computer Society.

Paul Oman is an associate professor of com-
puter science at the University of Idaho where
he directs the Software Engineering Test Lab.
He is a member of the IEEE Computer Society.

Readers can contact the authors through
Paul Oman, Software Engineering Test Lab,
University of Idaho, Moscow, Idaho 83843,
e-mail oman@cs.uidaho.edu.

August 1994 49

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on April 26, 2009 at 01:38 from IEEE Xplore. Restrictions apply.

mailto:oman@cs.uidaho.edu

