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Abstract 

Software architecture (SA) plays an important role in software 
development. Since the lifecycle stages post development become 
more and more important and face with many challenges similar to 
the development, it is a natural idea to introduce or extend SA into 
the stages post development. In this paper, we present our prac-
tices and experiences on applying software architecture into the 
deployment and maintenance of J2EE (Java 2 Platform Enterprise 
Edition) applications, including the tool and principles of SA-
based J2EE deployment and SA-based J2EE online maintenance. 
It demonstrates that 1) SA can help to achieve a holistic, fine-
grained and automated deployment of large-scale distributed sys-
tems by visualizing the structure of the system to be deployed; 2) 
SA can provide an understandable, operational and global view for 
online maintenance by organizing the fragmented and trivial man-
agement mechanisms; 3) Extending SA into the stages post devel-
opment makes it possible that the whole lifecycle of a software 
system can be governed by SA with many benefits, e.g. consis-
tency, traceability, responsiveness, etc. 

Keywords: software architecture, software maintenance, deploy-
ment, runtime software architecture 

Introduction 

Recognized as a critical issue in the engineering of complex soft-
ware systems, software architecture (SA) becomes an important 
subfield of software engineering. SA describes the gross structure 
of a software system with a collection of components, connectors 
and constraints [27]. Generally, SA acts as a bridge between re-
quirements and implementation and provides a blueprint for sys-
tem construction and composition [6]. In the past more than one 
decade, both academia and industry communities have gained 
plentiful achievements and experiences in SA, most of which fo-
cus on software development.  

Recently, introducing SA from the development to the post-
development phases in software lifecycle, including the deploy-
ment, maintenance and evolution, gains more and more attention 
for the sake of three facts. First, SA is an abstraction of the target 
system and describes a set of snapshots of the runtime system. 
Second, the value and applicability of SA in software development 
are proved. Third, the post-development phases become much 
more important than ever due to such as the rapid and continuous 
changes of requirements, the diversity and changes of environ-
ments, the return of investment, the time to market, etc.  

The efforts on post-development SA try to demonstrate the 
value and applicability and identify the methodological and tech-
nical challenges. Rakic et al. [25] propose the DeSi environment 
for specifying, manipulating, visualizing, and (re)estimating de-

ployment architectures of large-scale, highly distributed systems. 
D. Llambiri et al. [15] find that different configurations of the 
same SA have very different response times of main components. 
Tu et al. [31] define the build-time architecture view to describe 
SA when the target system is compiled and linked. Oreizy et al. 
[23] study how SA can support corrective, perfective and adaptive 
evolution at runtime and experiment on C2, a layered, event-based 
architectural style. Garlan et al. [7] investigate the critical issues 
for using SA at runtime based on their plentiful work on architec-
ture based self-repairing. 

Though the above efforts gain exciting achievements and ex-
periences, post-development SA is still far away from maturity 
and practicability. Particularly, since the software lifecycle can be 
divided into multiple phases after development, the applications of 
SA in these phases are different and may interact, sometimes inter-
fere, with each other more or less. It implies that we should inves-
tigate the relationship not only between SA at development and 
SA after development but also between SA in different post-
development phases. At the same time, since runtime environ-
ments have significant impacts on post-development SA, it had 
better to experiment on the popular ones, like J2EE and .NET, 
which would bring plentiful and realistic achievements and ex-
periences.  

In this paper, we will present our practices and experiences on 
post-development SA in J2EE applications, including the architec-
ture based deployment [11][14] and architecture based mainte-
nance [9][10]. We will also discuss what changes post-
development SA brings to SA at development and how to cope 
with these changes in architecture design [33][34][18]. The main 
purpose of this paper is to re-think and synthesize our previous 
work on post-development SA from the perspective of SA in the 
whole software lifecycle for investigating the realistic values and 
the technical and methodological challenges of introducing SA 
into deployment and maintenance.  

The rest of the paper is organized as follows: Section 2 intro-
duces J2EE and PKUAS as the background; Section 3 and 4 pre-
sent why, what, how and experimentation results of architecture 
based deployment and maintenance respectively; Section 5 dis-
cusses the relationships between SA at development, deployment 
and maintenance and corresponding challenges to the architecture 
centric software engineering; Section 6 introduces some related 
work and the last section concludes this paper and identifies the 
future work. 

Background 

Originally, our efforts to introduce SA into deployment and main-
tenance are motivated by dealing with some challenging problems 
in PKUAS [17], which is a J2EE application server. As shown in 
Figure 1, J2EE is the middleware including J2SE (supports the 

mailto:huanggang@cs.pku.edu.cn


execution of Java programs), common services (support functions 
common to network based systems, such as security, transaction 
and messaging), a Web Container (supports JSPs and servlets that 
deal with human-computer interactions and simple business logic) 
and an Enterprise Java Bean (EJB) Container (supports EJBs that 
deal with business logic and business data) [30]. 

 

Figure 1. Overview of J2EE 

As shown in Figure 2, PKUAS provides all functionalities re-
quired by J2EE v1.3 [30] and EJB v2.0 [29] in its componentized 
structure.  

 
Figure 2. Componentized Structure in PKUAS 

 Container system and container: a container provides a run-
time space for the components in the deployed applications 
with lifecycle management and contract enforcement. 
PKUAS implements standard EJB containers for stateless 
session bean, stateful session bean, bean-managed entity 
bean, container-managed entity bean and message-driven 
bean. One instance of a container holds all instances of one 
EJB. And a container system consists of the instances of the 
containers holding all EJBs in an application. Such organiza-
tion of containers facilitates the management specific to indi-
vidual applications, such as security realm per application 
and architectural recovery of a given application.  

 Service: it provides the common functions, like naming, 
communication, security, transaction and log. Particularly, 
the naming and communication services provide an interop-
erability framework that enables the components deployed in 
PKUAS to interact with each other and other components 
outside PKUAS through multiple interoperability protocols. 

 Tool: it provides functions to facilitate the operation of 
PKUAS, such as deployment and management. 

 Micro kernel: it provides a registry and an invocation frame-
work for the above platform components and other manage-
ment entities, like class loading, relation, timer and monitor.   

Based on the componentized structure, PKUAS implements a 
reflective framework, which supports the monitoring and control-
ling of the internal states and behaviors of the whole J2EE system. 
The reflective framework is the most important feature for archi-
tecture based deployment and maintenance, which will be dis-

cussed later. 

Architecture based Deployment 

Motivation 
Before a component based system can operate with desired func-
tions and qualities, it has to be configured and installed correctly 
according to runtime environments. This activity is called software 
deployment, which plays a key role in software lifecycle. Software 
deployment has gained more and more attention over the past dec-
ade as the rapid pervasiveness of the network and distributed sys-
tems. Kruchten [13] proposes the “4+1” view model, which 
defines the deployment view for describing the mapping(s) of the 
software to the distributed nodes. In OMG’s UML (Unified Mod-
eling Language) [21], the deployment diagrams show the configu-
ration of runtime processing elements and the software 
components, processes, and objects that execute on them.  

In J2EE [30], the development process of J2EE applications is 
divided into three stages: component creation, assembly and de-
ployment. During the deployment stage, the J2EE application is 
installed on the J2EE application servers with careful configura-
tion and integration with the runtime environments. There are two 
critical issues in the deployment of J2EE applications.  

First, J2EE defines XML based descriptors for standardizing the 
deployment. Deployers have to write a mass of description ele-
ments by hand even though some J2EE deployment tools are used. 
There are more than 25 items for an EJB, more than 30 items for a 
Web Application and more than 20 items for a J2EE Applications, 
including the names of EJBs, the declaration of required resources, 
security realm and roles, component names for runtime binding, 
and so on. To deploy a small system, e.g., the J2EE blueprint pro-
gram of JPS, more than one thousand elements are needed. In fact, 
almost all of the elements about deployment already exist in and 
can be transformed from SA descriptions. 

Second, when partitioning a system, deployers had better have 
a high-level guidance. Currently, deployers only have the codes or 
packages of a J2EE application. What they know is the corre-
sponding components to the system at first sight. Other informa-
tion of this system such as dependencies of components, 
interoperations between components, and security properties is 
sealed, though this information is very helpful for the deployment. 
It will take deployers many days to understand the whole system 
by reading related documents or even the source codes, which is 
obviously challenging and inefficient. So a clear and precise view 
of the whole system, including the components, the detailed struc-
ture and even the desired qualities, should be provided to deploy-
ers. 

Activities 

 

Figure 3. Activities in architecture-based deployment 

For addressing the above two issues, it is natural and feasible to 
introduce SA into J2EE deployment. The architecture based J2EE 
deployment can be divided into five steps, as shown in Figure 3.  



1) Building up the goals of the deployment: before the deploy-
ment, deployers need a clear view about the state which the 
system should achieve after being deployed. Deployers ana-
lyze the desired functions and qualities of the system based 
on the information in SA, consider many other technical and 
non-technical factors, e.g., operational strategies, and finally 
build up the goals of the deployment. 

2) Partitioning the system based on the software architecture 
and runtime environment: for utilizing the resources better 
and improve the performance further, the system should be 
partitioned into several parts and installed on distributed 
nodes respectively. On the one hand, as the description of 
software system’s gross structure, software architecture helps 
deployers to understand the components in the system and 
the relationships among them quickly, to further analyze the 
constraints of the components and the system. On the other 
hand, inspecting the runtime environment can help deployers 
to understand the environment and think over the factors of 
the environment totally that maybe impact the system.  

3) Installing the system on distributed nodes: before operating, 
some information should be added to the system for deploy-
ment, i.e., deployment descriptors. This information can be 
transformed from SA descriptions and deployers just need to 
append a little of information to accomplish the installations. 

4) Evaluating the result of the deployment: after the deployment, 
deployers should evaluate the result of the deployment based 
on the runtime information, which can be obtained by some 
management facilities provided by runtime environments. On 
the one hand, deployers should make a judgment whether the 
result meets the goals of deployment, and on the other hand, 
deployers should review other formerly deployed systems to 
ensure that they will not put any negative impacts on the 
newly deployed ones, and vice versa. 

5) Re-deployment: if the evaluating results cannot meet the 
goals, the system should be redeployed. This phase consists 
of the foregoing phases from 2 to 4. This phase will have to 
be repeated until all of the systems meet their goals of de-
ployment. In some cases, none deployment can meet the 
goals and then it is necessary to degrade the goals. 

Supporting Tool 
All activities in the architecture based J2EE deployment can be 
performed with the supporting tool, called CADTool [11]. It facili-
tates deployers to visually pack as well as assemble components. 
More importantly, based on the software architecture, CADTool 
extracts most needed information in the deployment from the ar-
chitecture models in the development. Figure 4 shows the case of 
deploying JPS onto four nodes with CADTool. JPS is one of the 
sample applications for J2EE Blueprints, which are for demon-
strating how to use the capabilities of the J2EE platform to de-
velop flexible, scalable, cross-platform e-business applications. 
The “deploy” panel shows the software architecture of JPS, and 
the “Server’s Information” panel shows real-time information of 
the runtime environment. CADTool can facilitate the deployment 
with four features.  

First, it can visualize SA in the development. If the deployable 
package contains the architecture description in ABC/ADL1 [19], 
                                                           
1 It is a customizable and extensible architecture description language with empha-
sis on middleware based systems. Since CADTool only uses the common ADL 

CADTool can display the syntax and semantics information pro-
duced in the development. If the deployable package contains the 
layout description of the architecture, CADTool can display the 
architecture in the same layout as that in the development, which 
helps to understand the intention of the designers. If the deploy-
able package does not contain the two descriptions, CADTool can 
automatically construct the architecture from the individual de-
ployable components. However, the last case is not desired be-
cause the recovered architecture lacks enough information derived 
from the development. 

 

Figure 4. Architecture based Deployment Tool 

Second, CADTool can visualize the servers and their capabili-
ties. Using the reflective framework of PKUAS, CADTool can 
automatically collect and display the servers’ information, such as 
CPU utilization, memory utilization, throughout, etc. The informa-
tion is useful to determine which components should be deployed 
into which servers. They also help to investigate whether the de-
ployment works well. For example, the CatalogEJB consumes 
much CPU time. If the component is deployed into the Server1, 
the CPU utilization of the Server1 may exceed 90% and the 
Server1 becomes unstable and easy to crash. Then, it’d better un-
deploy the CatalogEJB in the Server1 and re-deploy it into the 
cluster. 

Third, CADTool supports the deployment in a drag-and-drop 
manner. With the above two visual elements, a component can be 
easily deployed into a server just through dragging the component 
and dropping it on the target server or vice versa. In traditional 
deployment tools, deployers have to connect to a given server, 
load the components to be deployed into the server, and repeat the 
work again for another server. If a component is deployed into a 
server, the box representing the component will have a shadow 
with the same color as the server. In the Figure 4, the red, blue and 
green colors identify Server1, Server2 and Cluster (Server3 + 
Server4) respectively. 

Fourth and final, CADTool can automatically calculate some 
system-level or scenario-level properties. There are many success-
ful case studies on the quantitative and qualitative evaluations of 
the given architecture models. However, some properties may be 

                                                                                                            
elements, it can integrate the artifacts in other ADLs without fundamental changes. 



wrongly predicted in the design phase and should be re-evaluated 
in the deployment. Specially, some properties may be only avail-
able after the system running for a period, such as the response 
time and throughput. That means the deployment may not meet the 
requirements related to these properties. Then the whole or part of 
system has to be re-deployed with the actual properties. Currently, 
CADTool can automatically calculate the response time, through-
put and reliability of a given scenario.  

Evaluation 
After deploying JPS and RUBiS (an eBay-like bidding system 
prototype for evaluating the bottlenecks of such applications) in 
many different plans and comparing the results, we find a set of 
principles that demonstrate the values of SA in J2EE deployment 
besides the automatic generation of deployment descriptors [14].  

For example, composite components that are made up of several 
simple components are natural partitions. In general, interactions 
among the internal components of a composite component are 
very frequently. So these components should be deployed on the 
same node for avoiding heavy network traffic and delay. If a com-
posite component is too large to be deployed on any node, the 
internal components can be distributed into multiple nodes in the 
same local area network. Furthermore, different composite com-
ponents maybe involve the same simple components and then the 
same simple components might be deployed onto more than one 
node at the same time. 

For another example, interactions between components are criti-
cal for evaluating network resources. In a distributed environment, 
the bottleneck of a system sometimes is the network. The transmit 
delay, bandwidth and topology structure might affect the system’s 
performance greatly. However, if two components interact with 
each other rarely and the passing messages are very small, net-
work resources evaluation does not make sense. On the contrary, 
the evaluation is very important when two components have fre-
quent and heavy interactions. 

Architecture based Maintenance 

Motivation 
Software maintenance is a time-consuming, error-prone and tiring 
but inevitable and important job. There is a consensus that most of 
the complexity and cost of software maintenance mainly result 
from the difficulty of understanding the large-scale and complex 
software. Since that SA helps to understand large-scale software 
systems is well recognized, it is a natural idea to improve the un-
derstanding of the system to be maintained through its architecture. 
However, SA at development cannot be directed used in mainte-
nance due to the significant differences between these two phases. 

First, SA at development may not be available because the sys-
tem is developed without an explicit architecting phase or the 
documents are lost. Moreover, SA at development may have some 
differences or mismatch with the actual SA built in the target sys-
tem due to some misunderstandings and mistakes in the detailed 
design and implementation. This problem can be addressed by 
software architecture recovery [32]. But SA is usually recovered 
from the source codes and other documents of the target system 
based on program comprehension, which cannot capture precise 
and enough runtime states and behaviors. 

Second, since different stakeholders have different requirements, 
SA at development is for developers and may not fit for maintain-

ers. For example, maintainers require much more details about the 
system at runtime than developers, e.g., internal structure of a 
component, details of a connector, and so on. In that sense, SA at 
maintenance is a refinement of SA at development with plentiful 
runtime information.  

Third, maintainers often adjust the system to meet some new 
requirements, achieve better performance, correct errors or faults, 
etc. If maintainers change the system via normal management 
tools, some mistakes may occur because the normal tools are not 
designed for architecture based maintenance and then unable to 
perform the desired changes exactly, i.e., the changes made on the 
system are less or more than the desired changes. 

 Activities 
Generally, the maintenance can be divided into five steps, i.e., 
monitoring the states and behaviors of runtime systems, analyzing 
the runtime information for triggering changes, planning when and 
what to change when necessary, controlling runtime systems for 
perform changes and evaluating the effect of changes. For the ar-
chitecture based maintenance, the process and activities can be 
refined as shown in Figure 5. 

 

Figure 5. Activities in architecture-based maintenance 

1) Monitoring runtime systems from the perspective of SA: as 
mentioned above, SA at maintenance must maintain a precise 
and up-to-date mapping to the runtime system. So it is neces-
sary to collect runtime data and transform them into SA ele-
ments.  

2) Measuring runtime SA for filtering changes: though changes 
take place time to time inevitably, many of them are unwor-
thy to be handled. At the same time, it is tiring and sometimes 
impossible for maintainers to analyze any changes in runtime 
systems. Therefore, changes in runtime SA have to be meas-
ured and filtered in terms of maintainers’ requirements.  

3) Analyzing changes of runtime SA for detecting triggers: if a 
change indicates the occurrence or even the trend of a loss of 
functions or a decrease of qualities, it will trigger some corre-
sponding changes. The evaluation of the adaptation is also 
performed in this step. It should be noted that changes out of 
the runtime system may also cause adaptations, e.g., allowing 
new customers to access some services. 

4) Planning the adaptations: maintainers have to make some 
decisions for coping with the serious changes, i.e., when and 
what to change the states and behaviors of runtime systems.  

5) Instructing runtime SA for adaptations: The adaptations have 
to be transformed into changes of runtime SA.  

6) Controlling runtime systems from the perspective of SA: the 
changes of runtime SA have to be precisely executed in run-
time systems. 



Supporting Framework 
Compared to SA at development, SA at maintenance should be 
accessible and operable at runtime and provide a more concrete 
view with plentiful runtime information. For supporting such fea-
tures, we upgrade PKUAS from a customizable and extensible 
middleware to reflective middleware, i.e., architecture-based re-
flective middleware [17], as shown in Figure 6. The core idea is to 
implement ADL elements as meta entities in the reflective frame-
work, in which the traditional components in middleware platform 
and applications are base entities. There is a causal connection 
between base entities and meta entities, that is, changes of meta 
entities will cause the corresponding changes of base entities im-
mediately, and vice versa. These ADL elements form an accessible 
and up-to-date SA of the runtime system, which is called runtime 
software architecture (RSA) [9]. 

 

Figure 6. Architecture-based Reflective Framework 

The states and behaviors of middleware platform and applica-
tions can be observed and adapted from the perspectives of the 
platform RSA and application RSA respectively. The platform 
RSA represents the detailed implementation of middleware plat-
form as components and connectors. Middleware applications are 
invisible, i.e., represented as the attributes of some components. 
For example, a J2EE application server consists of containers and 
services while a J2EE application consists of EJBs and Servlets. In 
the platform RSA, the containers and services are represented as 
components; their interactions or dependencies are represented as 
connectors; and the EJBs or Servlets are represented as the attrib-
utes of the containers. On the contrary, the application RSA repre-
sents the middleware application as components and connectors. 
The middleware platform is represented as constraints or attributes 
of components and connectors. For example, J2EE security and 
transaction services are represented as the security and transaction 
constraints on the EJBs.  

The platform RSA and application RSA can support different 
maintenance tasks. Particularly, the value of the application RSA 
is mainly determined by the semantics it provides. Like CADTool, 
if SA descriptions in ABC/ADL at development are available, 
PKUAS can enrich the semantics of the application RSA with 
plentiful design information. Otherwise, PKUAS can recover SA 
from execution traces automatically [10] but the recovered SA has 
the precise syntax and poor semantics. Moreover, in this case, 
PKUAS has to capture and analyze massive tracing data, which is 

very expensive.   
Architecture based maintenance can be done by people or intel-

ligent computer programs. Then PKUAS provides both API and 
GUI for accessing the reflective SA. Moreover, since the reflec-
tion opens up the internal states and behaviors of the runtime sys-
tem, it brings new security threats. As a result, PKUAS 
implements a four-level security framework for controlling the 
accesses between clients and the reflective framework, between 
meta entities, between meta entities and base entities, between 
meta entities and local resources.  

Evaluation 
It is inevitable that maintaining runtime SA has a significant im-
pact on the performance of the whole system. Though PKUAS 
makes many tradeoffs between the performance and reflection, 
such as the optimized invocation framework for base entities and 
meta entities, the sharing of security information, the prohibition 
of Java security manager, etc., the performance penalty in real 
systems has to be evaluated. Based on ECperf, the standard per-
formance benchmark for J2EE application servers, we test three 
cases, i.e., PKUAS without reflection (no meta entities), with pas-
sive reflection (instantiate meta entities but do not collect data per 
invocation) and with active reflection (instantiate meta entities and 
collect data per invocation). The first two cases have similar 
throughput and response time while the last case decreases 
throughput by 7%-10% and increases response time by 8%-69%. 
We also find that the performance penalty of runtime SA increases 
drastically when the whole system has a high workload. So, the 
maintenance tasks can be done when the system workload is low 
for reducing the performance penalty.  

The experimentation demonstrates that introducing SA into 
maintenance has a notable but acceptable impact on the perform-
ance. Besides the performance impact, SA at maintenance has 
another critical issue, i.e., how to guarantee the correctness of 
changes. If the changed SA becomes inconsistent or incomplete, 
the corresponding changes of the runtime system will cause some-
thing wrong. The correctness of architecture based maintenance 
has two aspects. One is that changed SA is correct and another is 
that the corresponding changes of the runtime system are per-
formed correctly. The second correctness is guaranteed naturally 
and directly by the reflective relationships between SA and the 
runtime system. The first correctness can be achieved by integrat-
ing the model checking of SA at development. The model check-
ing is an import issue of SA, which usually requires some formal 
semantic models to be appended to the architecture description 
languages [16]. Since SA at maintenance can inherit syntax and 
semantics from SA at development, it can reuse the model check-
ing tools and information at runtime. However, SA at maintenance 
contains more information than SA at development, which implies 
that the model checking could get more data and check more 
things. For example, if a component supports different numbers of 
concurrent clients in different hosts, changing its location has to 
evaluate the concurrency requirement. 

Discussion 

Impacts of Post-development Software Architecture on 
Architecture Design 
After studying many cases, we find that post-development SA is 
really valuable and applicable but very difficult to use. Though 



runtime SA provides necessary mechanisms for monitoring and 
controlling runtime systems, it is still too difficult and expensive 
to maintain the systems in the rapid and continuous changes. The 
major reason is that runtime SA only solves the “how to do” prob-
lem, but cannot answer “why, when and what to do” in the main-
tenance. In details, middleware has no knowledge of what 
information should be collected for given quality attributes, e.g., 
does the response time of the user-interface component is critical 
to the performance? Furthermore, middleware cannot determine 
what values should be for satisfying quality requirements, e.g., is 
the expected response time of the user-interface component 2 sec-
onds or 5 seconds? Finally, middleware cannot make appropriate 
adaptation decisions by itself, e.g., what should be done when the 
expected response time of the user-interface component is ex-
ceeded. Even though runtime SA can inherit information from SA 
at development, it is too difficult for middleware to make correct 
decisions by itself. Such problems become a little easier but still so 
hard for maintainers because it is not easy to understand SA at 
development if they do not participate in the development. De-
ployers and SA at deployment have the same problems. 

In our opinion, the difficulty of using post-development SA is 
mainly resulted from the assumption that SA at development is 
produced by classical architecture based development methods, 
which means developers are unaware of post-development SA and 
then take none or little of deployment and maintenance into con-
sideration. On the other hand, though deploy-time SA and runtime 
SA refine develop-time SA more or less, the main syntax and se-
mantics of SA are produced at development. In other words, de-
velopers have much more knowledge and much better 
understanding of the system than deployers and maintainers. Since 
both deployment and maintenance require knowledge from not 
only post-development but also development, they should be per-
formed by deployers, maintainers and developers together. But in 
practice, it is impossible to call all of them together for any post-
development activity.  

Therefore, a possible solution is to make developers aware of 
post-development SA and then make decisions or suggestions as 
many as they can. For example, since the analysis and design of 
quality attributes are one of the major tasks in architecting, archi-
tects can analyze and measure the qualities of the whole system 
and decide how to guarantee the qualities when necessary. They 
know the priorities of different quality requirements and then can 
tradeoff among them at the system level. Supposed that the re-
sponse time of the system exceeds the expected value, knowing 
that performance is more important than security in the system, 
architects can reduce the response time via disabling some access 
control mechanisms for some unimportant components. Such ad-
aptations can be easily performed by runtime SA.  

In [34], we propose a quality attribute scenario based method 
for finding and analyzing the potential adaptation points in SA 
during design phase. As shown in Figure 7, the method has four 
vital steps. First, the application architecture is designed according 
to the requirements specifications by classical architecture-centric 
methods. Second, the quality attribute scenarios in the require-
ments specifications are investigated to find architectural elements 
that may be changed at runtime and then violate some qualities. 
Third, for a given scenario, the architect tries to find a solution to 
change the architecture so as to maintain certain quality attribute 
specified by the scenario. The application architecture with a set of 

such solutions can be considered as a self-adaptive architecture. 
Fourth and final, such SA will be interpreted by runtime SA. We 
also studies how to deal with dependability with develop-time, 
deploy-time and runtime SAs [18]. 

 
Figure 7. Self-adaptive architecture design 

Role of Architecture Description Language 
Architecture Description Language (ADL) is proposed to provide 
formal notations for development and analysis of software archi-
tectures [27]. Definitely, ADL is the key to keep the traceability 
and consistency between SA at development and SA after devel-
opment. As shown in Tab. 1, the architecture descriptions using 
ABC/ADL [19] help to generate almost all information needed in 
the J2EE deployment descriptor [30][29].  

Tab. 1 The mappings between ABC/ADL elements and J2EE 
deployment descriptor elements 

ABC/ADL Elements J2EE Deployment Descriptor Ele-
ments 

Name of ComponentDef <ejb-name> and <jndi-name> in 
<module> 

Name of the provide 
player of ComponentDef 

<home> and <remote> or <local-
home> and <local> in <session> or 
<entity> 

Name of the request player 
of ComponentDef 

<home> and <remote> in <ejb-ref>; 
<local-home> and <local> in <ejb-
local-ref> 

Attributes of Component-
Def 

<env-entry>, <resource-ref>, <cmp-
field> and <primkey-field> 

Properties of Component-
Def and AspectDef 

<ejb-class>, <session-type>, <persis-
tence-type>, <prim-key-class>, 
<transaction-type>, <reentrant>, <se-
curity-role-ref>, <security-role>, 
<method-permission> 

Since SA at maintenance contains more details than SA at de-
velopment, existing ADLs have to be extended. Figure 8 illustrates 
the major extension of ABC/ADL for describing SA at mainte-
nance [10]. The Runtime Software Architecture consists of all 
component and connector instances in the runtime system and 
extends Configuration in classical ADLs, which is a snapshot of a 
runtime system predicted at design. The Component contains one 
or more implementations and the Connector contains client-side 
proxies, connections and server-side proxies, all of which are enti-
ties provided by middleware for interoperability. 



 
Figure 8. Description of architecture at maintenance 

When we try to design SA with consideration of post-
development, classical ADLs have to be extended for capturing 
some important details of runtime systems. Tab. 2 shows how to 
describe or model runtime changes in ABC/ADL [34]. The com-
munication infrastructure (for interoperability) is represented as a 
simple or complex connector [33], and the common services pro-
vided by middleware are represented as aspects. Their runtime 
changes can be specified by the change point of a connector and 
weaving of aspects respectively.  

Tab. 2 ADL elements describing runtime changes 

Corresponding adaptations in PKUAS ADL elments 

Common 
service 

adding, removing, replacing even 
adapting the  interceptors 

Aspect Action in Weaving 

adding or removing corresponding 
interoperability protocols and 
transport protocols 

ChangePoint in 
predefined protocol 

Communication 
infrastructure 

adaptability of protocol 
implementation 

ChangePoint in 
property 

Combination combination of above 
modifications 

connector 

ChangePoint in 
userdefined protocol

 

It should be noted that the ADL for SA at maintenance is differ-
ent to that for SA at development that is aware of runtime changes 
because they have different stakeholders. On the one hand, devel-
opers just “be aware of” other than “understand” runtime details. It 
implies that runtime changes should be represented in terms of the 
background and comprehension of developers. On the other hand, 
maintainers need SA capturing runtime details precisely and com-
pletely. However, these two different perspectives make it uneasy 
to keep the traceability and consistency between different phases. 

Related Work 

Software Architecture in Deployment 
The deployment view in the “4+1” views and deployment dia-
grams in UML describe the prediction or planning of the deploy-
ment at development. At the same time, some researchers try to 
deploy systems with the guide of SA.  

Dearle et al. [4] propose a framework for constraint-based de-
ployment and automatic management of distributed applications. 
In this framework, a purely declarative and descriptive ADL, 

named Deladas, is used to describe a deployment goal. To satisfy 
the goal, an automatic deployment and management engine 
(ADME) tries to generate a configuration, which describes which 
components are deployed in which hosts. After the initial deploy-
ment, the ADME will monitor the deployed application to check 
whether the deployment satisfies the original goal and re-deploy 
the application if necessary.  This approach has the similar phi-
losophy to our approach on the role of SA in the deployment. 
However, this approach ignores the plentiful knowledge derived 
from the development and the runtime states of hosts. Without 
such knowledge, it is very difficult to generate the proper configu-
ration in a manual or automated way.  

Rakic et al. [25] propose DeSi to support flexible and tailorable 
specification, manipulation, visualization, and (re)estimation of 
deployment architectures for large-scale, highly distributed sys-
tems. They focus on how to take the availability into account in 
the deployment, including defining a formal foundation and inves-
tigating six algorithms to automatically generate the deployment 
plan. However, in DeSi, the formal specification of the deployed 
application has to be written by hand and some values in the speci-
fication are difficult to retrieve without the support of runtime 
environments. On the other hand, the formal specification can be 
automatically generated in CADTool with the plentiful knowledge 
derived from the development and runtime states of hosts.  In our 
opinion, the work of DeSi can improve the reliability calculation 
of CADTool, which is under development.  

Software Architecture in Maintenance 
Oreizy et al. [23] study how SA can support corrective, perfective 
and adaptive evolution at runtime and experiment on C2, a layered, 
event-based architectural style. Garlan et al. [8] use the gauges to 
collect the states and behaviors of the underlying system and adapt 
the system according to some special requirements at runtime. 
Rosenblum et al. [26] investigate the architectural concerns in the 
component interoperability framework and combine the JavaBean 
model with C2 style. Bril et al. [2] provide a toolset, called URSA, 
to support program understanding and complexity management in 
Philips. In these approaches, SA at development is used as a 
document at hand, that is, such SA cannot accurately and up-to-
date describe the target system. And changes made on SA do not 
cause corresponding changes in runtime systems until maintainers 
explicitly manipulate runtime systems in other ad hoc ways. 

OpenORB [1] adds reflection ability into COM (Component 
Object Model). It provides four self-representations, including SA 
of the whole system, the interfaces of components, the interception 
of components and resources. In fact, the complex views provided 
by OpenORB and PKUAS are originated by the separation of con-
cerns in reflection proposed by Okamura et al. [22] and the archi-
tectural reflection proposed by Cazzola et al. [3]. But OpenORB 
and PKUAS have quite different implementations. Firstly, Ope-
nORB represents the system in four independent views while 
PKUAS represents all information in SA. Secondly, OpenORB 
defines a set of reflective interfaces that the reflective COM ob-
jects have to implement. Then, developers of application compo-
nents have to be aware of reflection. In that sense, OpenORB just 
implements a reflective component model, just like K-
Components [5] and FORMAware [20]. On the contrary, PKUAS 
implements architectural reflection in a “pure” reflective middle-
ware way, that is, does not define such interfaces so that applica-
tion developers are unaware of reflection. In our opinion, both 



ways have advantages and disadvantages and a reflective EJB 
component model is under development to improve reflective 
PKUAS. 

Conclusion and Future Work 

Making software architecture available in the whole software life-
cycle becomes a hot topic recently. This paper just presents our 
practices and experiences on introducing SA from development 
into deployment and maintenance. The most important contribu-
tion of this paper is that we analyze realistic requirements and 
benefits of post-development SA and identify technical challenges 
with demonstration on J2EE which is one of the most popular run-
time environments. Another important contribution is that we in-
vestigate methodological challenges for extending SA into the 
whole software lifecycle. 

There are many open issues to be addressed. Since our original 
goal is to facilitate the construction of adaptive component based 
systems via middleware, we will focus on how to model dynamic 
SA enabled by middleware and how to utilize the knowledge em-
bedded in SA for making middleware based systems self-adaptive. 
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