
Post-Development Software Architecture
Gang Huang

Key Laboratory of High Confidence Software Technologies, Ministry of Education

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China

E-mail: huanggang@cs.pku.edu.cn

Abstract

Software architecture (SA) plays an important role in software
development. Since the lifecycle stages post development become
more and more important and face with many challenges similar to
the development, it is a natural idea to introduce or extend SA into
the stages post development. In this paper, we present our prac-
tices and experiences on applying software architecture into the
deployment and maintenance of J2EE (Java 2 Platform Enterprise
Edition) applications, including the tool and principles of SA-
based J2EE deployment and SA-based J2EE online maintenance.
It demonstrates that 1) SA can help to achieve a holistic, fine-
grained and automated deployment of large-scale distributed sys-
tems by visualizing the structure of the system to be deployed; 2)
SA can provide an understandable, operational and global view for
online maintenance by organizing the fragmented and trivial man-
agement mechanisms; 3) Extending SA into the stages post devel-
opment makes it possible that the whole lifecycle of a software
system can be governed by SA with many benefits, e.g. consis-
tency, traceability, responsiveness, etc.

Keywords: software architecture, software maintenance, deploy-
ment, runtime software architecture

Introduction

Recognized as a critical issue in the engineering of complex soft-
ware systems, software architecture (SA) becomes an important
subfield of software engineering. SA describes the gross structure
of a software system with a collection of components, connectors
and constraints [27]. Generally, SA acts as a bridge between re-
quirements and implementation and provides a blueprint for sys-
tem construction and composition [6]. In the past more than one
decade, both academia and industry communities have gained
plentiful achievements and experiences in SA, most of which fo-
cus on software development.

Recently, introducing SA from the development to the post-
development phases in software lifecycle, including the deploy-
ment, maintenance and evolution, gains more and more attention
for the sake of three facts. First, SA is an abstraction of the target
system and describes a set of snapshots of the runtime system.
Second, the value and applicability of SA in software development
are proved. Third, the post-development phases become much
more important than ever due to such as the rapid and continuous
changes of requirements, the diversity and changes of environ-
ments, the return of investment, the time to market, etc.

The efforts on post-development SA try to demonstrate the
value and applicability and identify the methodological and tech-
nical challenges. Rakic et al. [25] propose the DeSi environment
for specifying, manipulating, visualizing, and (re)estimating de-

ployment architectures of large-scale, highly distributed systems.
D. Llambiri et al. [15] find that different configurations of the
same SA have very different response times of main components.
Tu et al. [31] define the build-time architecture view to describe
SA when the target system is compiled and linked. Oreizy et al.
[23] study how SA can support corrective, perfective and adaptive
evolution at runtime and experiment on C2, a layered, event-based
architectural style. Garlan et al. [7] investigate the critical issues
for using SA at runtime based on their plentiful work on architec-
ture based self-repairing.

Though the above efforts gain exciting achievements and ex-
periences, post-development SA is still far away from maturity
and practicability. Particularly, since the software lifecycle can be
divided into multiple phases after development, the applications of
SA in these phases are different and may interact, sometimes inter-
fere, with each other more or less. It implies that we should inves-
tigate the relationship not only between SA at development and
SA after development but also between SA in different post-
development phases. At the same time, since runtime environ-
ments have significant impacts on post-development SA, it had
better to experiment on the popular ones, like J2EE and .NET,
which would bring plentiful and realistic achievements and ex-
periences.

In this paper, we will present our practices and experiences on
post-development SA in J2EE applications, including the architec-
ture based deployment [11][14] and architecture based mainte-
nance [9][10]. We will also discuss what changes post-
development SA brings to SA at development and how to cope
with these changes in architecture design [33][34][18]. The main
purpose of this paper is to re-think and synthesize our previous
work on post-development SA from the perspective of SA in the
whole software lifecycle for investigating the realistic values and
the technical and methodological challenges of introducing SA
into deployment and maintenance.

The rest of the paper is organized as follows: Section 2 intro-
duces J2EE and PKUAS as the background; Section 3 and 4 pre-
sent why, what, how and experimentation results of architecture
based deployment and maintenance respectively; Section 5 dis-
cusses the relationships between SA at development, deployment
and maintenance and corresponding challenges to the architecture
centric software engineering; Section 6 introduces some related
work and the last section concludes this paper and identifies the
future work.

Background

Originally, our efforts to introduce SA into deployment and main-
tenance are motivated by dealing with some challenging problems
in PKUAS [17], which is a J2EE application server. As shown in
Figure 1, J2EE is the middleware including J2SE (supports the

mailto:huanggang@cs.pku.edu.cn

execution of Java programs), common services (support functions
common to network based systems, such as security, transaction
and messaging), a Web Container (supports JSPs and servlets that
deal with human-computer interactions and simple business logic)
and an Enterprise Java Bean (EJB) Container (supports EJBs that
deal with business logic and business data) [30].

Figure 1. Overview of J2EE

As shown in Figure 2, PKUAS provides all functionalities re-
quired by J2EE v1.3 [30] and EJB v2.0 [29] in its componentized
structure.

Figure 2. Componentized Structure in PKUAS

 Container system and container: a container provides a run-
time space for the components in the deployed applications
with lifecycle management and contract enforcement.
PKUAS implements standard EJB containers for stateless
session bean, stateful session bean, bean-managed entity
bean, container-managed entity bean and message-driven
bean. One instance of a container holds all instances of one
EJB. And a container system consists of the instances of the
containers holding all EJBs in an application. Such organiza-
tion of containers facilitates the management specific to indi-
vidual applications, such as security realm per application
and architectural recovery of a given application.

 Service: it provides the common functions, like naming,
communication, security, transaction and log. Particularly,
the naming and communication services provide an interop-
erability framework that enables the components deployed in
PKUAS to interact with each other and other components
outside PKUAS through multiple interoperability protocols.

 Tool: it provides functions to facilitate the operation of
PKUAS, such as deployment and management.

 Micro kernel: it provides a registry and an invocation frame-
work for the above platform components and other manage-
ment entities, like class loading, relation, timer and monitor.

Based on the componentized structure, PKUAS implements a
reflective framework, which supports the monitoring and control-
ling of the internal states and behaviors of the whole J2EE system.
The reflective framework is the most important feature for archi-
tecture based deployment and maintenance, which will be dis-

cussed later.

Architecture based Deployment

Motivation
Before a component based system can operate with desired func-
tions and qualities, it has to be configured and installed correctly
according to runtime environments. This activity is called software
deployment, which plays a key role in software lifecycle. Software
deployment has gained more and more attention over the past dec-
ade as the rapid pervasiveness of the network and distributed sys-
tems. Kruchten [13] proposes the “4+1” view model, which
defines the deployment view for describing the mapping(s) of the
software to the distributed nodes. In OMG’s UML (Unified Mod-
eling Language) [21], the deployment diagrams show the configu-
ration of runtime processing elements and the software
components, processes, and objects that execute on them.

In J2EE [30], the development process of J2EE applications is
divided into three stages: component creation, assembly and de-
ployment. During the deployment stage, the J2EE application is
installed on the J2EE application servers with careful configura-
tion and integration with the runtime environments. There are two
critical issues in the deployment of J2EE applications.

First, J2EE defines XML based descriptors for standardizing the
deployment. Deployers have to write a mass of description ele-
ments by hand even though some J2EE deployment tools are used.
There are more than 25 items for an EJB, more than 30 items for a
Web Application and more than 20 items for a J2EE Applications,
including the names of EJBs, the declaration of required resources,
security realm and roles, component names for runtime binding,
and so on. To deploy a small system, e.g., the J2EE blueprint pro-
gram of JPS, more than one thousand elements are needed. In fact,
almost all of the elements about deployment already exist in and
can be transformed from SA descriptions.

Second, when partitioning a system, deployers had better have
a high-level guidance. Currently, deployers only have the codes or
packages of a J2EE application. What they know is the corre-
sponding components to the system at first sight. Other informa-
tion of this system such as dependencies of components,
interoperations between components, and security properties is
sealed, though this information is very helpful for the deployment.
It will take deployers many days to understand the whole system
by reading related documents or even the source codes, which is
obviously challenging and inefficient. So a clear and precise view
of the whole system, including the components, the detailed struc-
ture and even the desired qualities, should be provided to deploy-
ers.

Activities

Figure 3. Activities in architecture-based deployment

For addressing the above two issues, it is natural and feasible to
introduce SA into J2EE deployment. The architecture based J2EE
deployment can be divided into five steps, as shown in Figure 3.

1) Building up the goals of the deployment: before the deploy-
ment, deployers need a clear view about the state which the
system should achieve after being deployed. Deployers ana-
lyze the desired functions and qualities of the system based
on the information in SA, consider many other technical and
non-technical factors, e.g., operational strategies, and finally
build up the goals of the deployment.

2) Partitioning the system based on the software architecture
and runtime environment: for utilizing the resources better
and improve the performance further, the system should be
partitioned into several parts and installed on distributed
nodes respectively. On the one hand, as the description of
software system’s gross structure, software architecture helps
deployers to understand the components in the system and
the relationships among them quickly, to further analyze the
constraints of the components and the system. On the other
hand, inspecting the runtime environment can help deployers
to understand the environment and think over the factors of
the environment totally that maybe impact the system.

3) Installing the system on distributed nodes: before operating,
some information should be added to the system for deploy-
ment, i.e., deployment descriptors. This information can be
transformed from SA descriptions and deployers just need to
append a little of information to accomplish the installations.

4) Evaluating the result of the deployment: after the deployment,
deployers should evaluate the result of the deployment based
on the runtime information, which can be obtained by some
management facilities provided by runtime environments. On
the one hand, deployers should make a judgment whether the
result meets the goals of deployment, and on the other hand,
deployers should review other formerly deployed systems to
ensure that they will not put any negative impacts on the
newly deployed ones, and vice versa.

5) Re-deployment: if the evaluating results cannot meet the
goals, the system should be redeployed. This phase consists
of the foregoing phases from 2 to 4. This phase will have to
be repeated until all of the systems meet their goals of de-
ployment. In some cases, none deployment can meet the
goals and then it is necessary to degrade the goals.

Supporting Tool
All activities in the architecture based J2EE deployment can be
performed with the supporting tool, called CADTool [11]. It facili-
tates deployers to visually pack as well as assemble components.
More importantly, based on the software architecture, CADTool
extracts most needed information in the deployment from the ar-
chitecture models in the development. Figure 4 shows the case of
deploying JPS onto four nodes with CADTool. JPS is one of the
sample applications for J2EE Blueprints, which are for demon-
strating how to use the capabilities of the J2EE platform to de-
velop flexible, scalable, cross-platform e-business applications.
The “deploy” panel shows the software architecture of JPS, and
the “Server’s Information” panel shows real-time information of
the runtime environment. CADTool can facilitate the deployment
with four features.

First, it can visualize SA in the development. If the deployable
package contains the architecture description in ABC/ADL1 [19],

1 It is a customizable and extensible architecture description language with empha-
sis on middleware based systems. Since CADTool only uses the common ADL

CADTool can display the syntax and semantics information pro-
duced in the development. If the deployable package contains the
layout description of the architecture, CADTool can display the
architecture in the same layout as that in the development, which
helps to understand the intention of the designers. If the deploy-
able package does not contain the two descriptions, CADTool can
automatically construct the architecture from the individual de-
ployable components. However, the last case is not desired be-
cause the recovered architecture lacks enough information derived
from the development.

Figure 4. Architecture based Deployment Tool

Second, CADTool can visualize the servers and their capabili-
ties. Using the reflective framework of PKUAS, CADTool can
automatically collect and display the servers’ information, such as
CPU utilization, memory utilization, throughout, etc. The informa-
tion is useful to determine which components should be deployed
into which servers. They also help to investigate whether the de-
ployment works well. For example, the CatalogEJB consumes
much CPU time. If the component is deployed into the Server1,
the CPU utilization of the Server1 may exceed 90% and the
Server1 becomes unstable and easy to crash. Then, it’d better un-
deploy the CatalogEJB in the Server1 and re-deploy it into the
cluster.

Third, CADTool supports the deployment in a drag-and-drop
manner. With the above two visual elements, a component can be
easily deployed into a server just through dragging the component
and dropping it on the target server or vice versa. In traditional
deployment tools, deployers have to connect to a given server,
load the components to be deployed into the server, and repeat the
work again for another server. If a component is deployed into a
server, the box representing the component will have a shadow
with the same color as the server. In the Figure 4, the red, blue and
green colors identify Server1, Server2 and Cluster (Server3 +
Server4) respectively.

Fourth and final, CADTool can automatically calculate some
system-level or scenario-level properties. There are many success-
ful case studies on the quantitative and qualitative evaluations of
the given architecture models. However, some properties may be

elements, it can integrate the artifacts in other ADLs without fundamental changes.

wrongly predicted in the design phase and should be re-evaluated
in the deployment. Specially, some properties may be only avail-
able after the system running for a period, such as the response
time and throughput. That means the deployment may not meet the
requirements related to these properties. Then the whole or part of
system has to be re-deployed with the actual properties. Currently,
CADTool can automatically calculate the response time, through-
put and reliability of a given scenario.

Evaluation
After deploying JPS and RUBiS (an eBay-like bidding system
prototype for evaluating the bottlenecks of such applications) in
many different plans and comparing the results, we find a set of
principles that demonstrate the values of SA in J2EE deployment
besides the automatic generation of deployment descriptors [14].

For example, composite components that are made up of several
simple components are natural partitions. In general, interactions
among the internal components of a composite component are
very frequently. So these components should be deployed on the
same node for avoiding heavy network traffic and delay. If a com-
posite component is too large to be deployed on any node, the
internal components can be distributed into multiple nodes in the
same local area network. Furthermore, different composite com-
ponents maybe involve the same simple components and then the
same simple components might be deployed onto more than one
node at the same time.

For another example, interactions between components are criti-
cal for evaluating network resources. In a distributed environment,
the bottleneck of a system sometimes is the network. The transmit
delay, bandwidth and topology structure might affect the system’s
performance greatly. However, if two components interact with
each other rarely and the passing messages are very small, net-
work resources evaluation does not make sense. On the contrary,
the evaluation is very important when two components have fre-
quent and heavy interactions.

Architecture based Maintenance

Motivation
Software maintenance is a time-consuming, error-prone and tiring
but inevitable and important job. There is a consensus that most of
the complexity and cost of software maintenance mainly result
from the difficulty of understanding the large-scale and complex
software. Since that SA helps to understand large-scale software
systems is well recognized, it is a natural idea to improve the un-
derstanding of the system to be maintained through its architecture.
However, SA at development cannot be directed used in mainte-
nance due to the significant differences between these two phases.

First, SA at development may not be available because the sys-
tem is developed without an explicit architecting phase or the
documents are lost. Moreover, SA at development may have some
differences or mismatch with the actual SA built in the target sys-
tem due to some misunderstandings and mistakes in the detailed
design and implementation. This problem can be addressed by
software architecture recovery [32]. But SA is usually recovered
from the source codes and other documents of the target system
based on program comprehension, which cannot capture precise
and enough runtime states and behaviors.

Second, since different stakeholders have different requirements,
SA at development is for developers and may not fit for maintain-

ers. For example, maintainers require much more details about the
system at runtime than developers, e.g., internal structure of a
component, details of a connector, and so on. In that sense, SA at
maintenance is a refinement of SA at development with plentiful
runtime information.

Third, maintainers often adjust the system to meet some new
requirements, achieve better performance, correct errors or faults,
etc. If maintainers change the system via normal management
tools, some mistakes may occur because the normal tools are not
designed for architecture based maintenance and then unable to
perform the desired changes exactly, i.e., the changes made on the
system are less or more than the desired changes.

 Activities
Generally, the maintenance can be divided into five steps, i.e.,
monitoring the states and behaviors of runtime systems, analyzing
the runtime information for triggering changes, planning when and
what to change when necessary, controlling runtime systems for
perform changes and evaluating the effect of changes. For the ar-
chitecture based maintenance, the process and activities can be
refined as shown in Figure 5.

Figure 5. Activities in architecture-based maintenance

1) Monitoring runtime systems from the perspective of SA: as
mentioned above, SA at maintenance must maintain a precise
and up-to-date mapping to the runtime system. So it is neces-
sary to collect runtime data and transform them into SA ele-
ments.

2) Measuring runtime SA for filtering changes: though changes
take place time to time inevitably, many of them are unwor-
thy to be handled. At the same time, it is tiring and sometimes
impossible for maintainers to analyze any changes in runtime
systems. Therefore, changes in runtime SA have to be meas-
ured and filtered in terms of maintainers’ requirements.

3) Analyzing changes of runtime SA for detecting triggers: if a
change indicates the occurrence or even the trend of a loss of
functions or a decrease of qualities, it will trigger some corre-
sponding changes. The evaluation of the adaptation is also
performed in this step. It should be noted that changes out of
the runtime system may also cause adaptations, e.g., allowing
new customers to access some services.

4) Planning the adaptations: maintainers have to make some
decisions for coping with the serious changes, i.e., when and
what to change the states and behaviors of runtime systems.

5) Instructing runtime SA for adaptations: The adaptations have
to be transformed into changes of runtime SA.

6) Controlling runtime systems from the perspective of SA: the
changes of runtime SA have to be precisely executed in run-
time systems.

Supporting Framework
Compared to SA at development, SA at maintenance should be
accessible and operable at runtime and provide a more concrete
view with plentiful runtime information. For supporting such fea-
tures, we upgrade PKUAS from a customizable and extensible
middleware to reflective middleware, i.e., architecture-based re-
flective middleware [17], as shown in Figure 6. The core idea is to
implement ADL elements as meta entities in the reflective frame-
work, in which the traditional components in middleware platform
and applications are base entities. There is a causal connection
between base entities and meta entities, that is, changes of meta
entities will cause the corresponding changes of base entities im-
mediately, and vice versa. These ADL elements form an accessible
and up-to-date SA of the runtime system, which is called runtime
software architecture (RSA) [9].

Figure 6. Architecture-based Reflective Framework

The states and behaviors of middleware platform and applica-
tions can be observed and adapted from the perspectives of the
platform RSA and application RSA respectively. The platform
RSA represents the detailed implementation of middleware plat-
form as components and connectors. Middleware applications are
invisible, i.e., represented as the attributes of some components.
For example, a J2EE application server consists of containers and
services while a J2EE application consists of EJBs and Servlets. In
the platform RSA, the containers and services are represented as
components; their interactions or dependencies are represented as
connectors; and the EJBs or Servlets are represented as the attrib-
utes of the containers. On the contrary, the application RSA repre-
sents the middleware application as components and connectors.
The middleware platform is represented as constraints or attributes
of components and connectors. For example, J2EE security and
transaction services are represented as the security and transaction
constraints on the EJBs.

The platform RSA and application RSA can support different
maintenance tasks. Particularly, the value of the application RSA
is mainly determined by the semantics it provides. Like CADTool,
if SA descriptions in ABC/ADL at development are available,
PKUAS can enrich the semantics of the application RSA with
plentiful design information. Otherwise, PKUAS can recover SA
from execution traces automatically [10] but the recovered SA has
the precise syntax and poor semantics. Moreover, in this case,
PKUAS has to capture and analyze massive tracing data, which is

very expensive.
Architecture based maintenance can be done by people or intel-

ligent computer programs. Then PKUAS provides both API and
GUI for accessing the reflective SA. Moreover, since the reflec-
tion opens up the internal states and behaviors of the runtime sys-
tem, it brings new security threats. As a result, PKUAS
implements a four-level security framework for controlling the
accesses between clients and the reflective framework, between
meta entities, between meta entities and base entities, between
meta entities and local resources.

Evaluation
It is inevitable that maintaining runtime SA has a significant im-
pact on the performance of the whole system. Though PKUAS
makes many tradeoffs between the performance and reflection,
such as the optimized invocation framework for base entities and
meta entities, the sharing of security information, the prohibition
of Java security manager, etc., the performance penalty in real
systems has to be evaluated. Based on ECperf, the standard per-
formance benchmark for J2EE application servers, we test three
cases, i.e., PKUAS without reflection (no meta entities), with pas-
sive reflection (instantiate meta entities but do not collect data per
invocation) and with active reflection (instantiate meta entities and
collect data per invocation). The first two cases have similar
throughput and response time while the last case decreases
throughput by 7%-10% and increases response time by 8%-69%.
We also find that the performance penalty of runtime SA increases
drastically when the whole system has a high workload. So, the
maintenance tasks can be done when the system workload is low
for reducing the performance penalty.

The experimentation demonstrates that introducing SA into
maintenance has a notable but acceptable impact on the perform-
ance. Besides the performance impact, SA at maintenance has
another critical issue, i.e., how to guarantee the correctness of
changes. If the changed SA becomes inconsistent or incomplete,
the corresponding changes of the runtime system will cause some-
thing wrong. The correctness of architecture based maintenance
has two aspects. One is that changed SA is correct and another is
that the corresponding changes of the runtime system are per-
formed correctly. The second correctness is guaranteed naturally
and directly by the reflective relationships between SA and the
runtime system. The first correctness can be achieved by integrat-
ing the model checking of SA at development. The model check-
ing is an import issue of SA, which usually requires some formal
semantic models to be appended to the architecture description
languages [16]. Since SA at maintenance can inherit syntax and
semantics from SA at development, it can reuse the model check-
ing tools and information at runtime. However, SA at maintenance
contains more information than SA at development, which implies
that the model checking could get more data and check more
things. For example, if a component supports different numbers of
concurrent clients in different hosts, changing its location has to
evaluate the concurrency requirement.

Discussion

Impacts of Post-development Software Architecture on
Architecture Design
After studying many cases, we find that post-development SA is
really valuable and applicable but very difficult to use. Though

runtime SA provides necessary mechanisms for monitoring and
controlling runtime systems, it is still too difficult and expensive
to maintain the systems in the rapid and continuous changes. The
major reason is that runtime SA only solves the “how to do” prob-
lem, but cannot answer “why, when and what to do” in the main-
tenance. In details, middleware has no knowledge of what
information should be collected for given quality attributes, e.g.,
does the response time of the user-interface component is critical
to the performance? Furthermore, middleware cannot determine
what values should be for satisfying quality requirements, e.g., is
the expected response time of the user-interface component 2 sec-
onds or 5 seconds? Finally, middleware cannot make appropriate
adaptation decisions by itself, e.g., what should be done when the
expected response time of the user-interface component is ex-
ceeded. Even though runtime SA can inherit information from SA
at development, it is too difficult for middleware to make correct
decisions by itself. Such problems become a little easier but still so
hard for maintainers because it is not easy to understand SA at
development if they do not participate in the development. De-
ployers and SA at deployment have the same problems.

In our opinion, the difficulty of using post-development SA is
mainly resulted from the assumption that SA at development is
produced by classical architecture based development methods,
which means developers are unaware of post-development SA and
then take none or little of deployment and maintenance into con-
sideration. On the other hand, though deploy-time SA and runtime
SA refine develop-time SA more or less, the main syntax and se-
mantics of SA are produced at development. In other words, de-
velopers have much more knowledge and much better
understanding of the system than deployers and maintainers. Since
both deployment and maintenance require knowledge from not
only post-development but also development, they should be per-
formed by deployers, maintainers and developers together. But in
practice, it is impossible to call all of them together for any post-
development activity.

Therefore, a possible solution is to make developers aware of
post-development SA and then make decisions or suggestions as
many as they can. For example, since the analysis and design of
quality attributes are one of the major tasks in architecting, archi-
tects can analyze and measure the qualities of the whole system
and decide how to guarantee the qualities when necessary. They
know the priorities of different quality requirements and then can
tradeoff among them at the system level. Supposed that the re-
sponse time of the system exceeds the expected value, knowing
that performance is more important than security in the system,
architects can reduce the response time via disabling some access
control mechanisms for some unimportant components. Such ad-
aptations can be easily performed by runtime SA.

In [34], we propose a quality attribute scenario based method
for finding and analyzing the potential adaptation points in SA
during design phase. As shown in Figure 7, the method has four
vital steps. First, the application architecture is designed according
to the requirements specifications by classical architecture-centric
methods. Second, the quality attribute scenarios in the require-
ments specifications are investigated to find architectural elements
that may be changed at runtime and then violate some qualities.
Third, for a given scenario, the architect tries to find a solution to
change the architecture so as to maintain certain quality attribute
specified by the scenario. The application architecture with a set of

such solutions can be considered as a self-adaptive architecture.
Fourth and final, such SA will be interpreted by runtime SA. We
also studies how to deal with dependability with develop-time,
deploy-time and runtime SAs [18].

Figure 7. Self-adaptive architecture design

Role of Architecture Description Language
Architecture Description Language (ADL) is proposed to provide
formal notations for development and analysis of software archi-
tectures [27]. Definitely, ADL is the key to keep the traceability
and consistency between SA at development and SA after devel-
opment. As shown in Tab. 1, the architecture descriptions using
ABC/ADL [19] help to generate almost all information needed in
the J2EE deployment descriptor [30][29].

Tab. 1 The mappings between ABC/ADL elements and J2EE
deployment descriptor elements

ABC/ADL Elements J2EE Deployment Descriptor Ele-
ments

Name of ComponentDef <ejb-name> and <jndi-name> in
<module>

Name of the provide
player of ComponentDef

<home> and <remote> or <local-
home> and <local> in <session> or
<entity>

Name of the request player
of ComponentDef

<home> and <remote> in <ejb-ref>;
<local-home> and <local> in <ejb-
local-ref>

Attributes of Component-
Def

<env-entry>, <resource-ref>, <cmp-
field> and <primkey-field>

Properties of Component-
Def and AspectDef

<ejb-class>, <session-type>, <persis-
tence-type>, <prim-key-class>,
<transaction-type>, <reentrant>, <se-
curity-role-ref>, <security-role>,
<method-permission>

Since SA at maintenance contains more details than SA at de-
velopment, existing ADLs have to be extended. Figure 8 illustrates
the major extension of ABC/ADL for describing SA at mainte-
nance [10]. The Runtime Software Architecture consists of all
component and connector instances in the runtime system and
extends Configuration in classical ADLs, which is a snapshot of a
runtime system predicted at design. The Component contains one
or more implementations and the Connector contains client-side
proxies, connections and server-side proxies, all of which are enti-
ties provided by middleware for interoperability.

Figure 8. Description of architecture at maintenance

When we try to design SA with consideration of post-
development, classical ADLs have to be extended for capturing
some important details of runtime systems. Tab. 2 shows how to
describe or model runtime changes in ABC/ADL [34]. The com-
munication infrastructure (for interoperability) is represented as a
simple or complex connector [33], and the common services pro-
vided by middleware are represented as aspects. Their runtime
changes can be specified by the change point of a connector and
weaving of aspects respectively.

Tab. 2 ADL elements describing runtime changes

Corresponding adaptations in PKUAS ADL elments

Common
service

adding, removing, replacing even
adapting the interceptors

Aspect Action in Weaving

adding or removing corresponding
interoperability protocols and
transport protocols

ChangePoint in
predefined protocol

Communication
infrastructure

adaptability of protocol
implementation

ChangePoint in
property

Combination combination of above
modifications

connector

ChangePoint in
userdefined protocol

It should be noted that the ADL for SA at maintenance is differ-
ent to that for SA at development that is aware of runtime changes
because they have different stakeholders. On the one hand, devel-
opers just “be aware of” other than “understand” runtime details. It
implies that runtime changes should be represented in terms of the
background and comprehension of developers. On the other hand,
maintainers need SA capturing runtime details precisely and com-
pletely. However, these two different perspectives make it uneasy
to keep the traceability and consistency between different phases.

Related Work

Software Architecture in Deployment
The deployment view in the “4+1” views and deployment dia-
grams in UML describe the prediction or planning of the deploy-
ment at development. At the same time, some researchers try to
deploy systems with the guide of SA.

Dearle et al. [4] propose a framework for constraint-based de-
ployment and automatic management of distributed applications.
In this framework, a purely declarative and descriptive ADL,

named Deladas, is used to describe a deployment goal. To satisfy
the goal, an automatic deployment and management engine
(ADME) tries to generate a configuration, which describes which
components are deployed in which hosts. After the initial deploy-
ment, the ADME will monitor the deployed application to check
whether the deployment satisfies the original goal and re-deploy
the application if necessary. This approach has the similar phi-
losophy to our approach on the role of SA in the deployment.
However, this approach ignores the plentiful knowledge derived
from the development and the runtime states of hosts. Without
such knowledge, it is very difficult to generate the proper configu-
ration in a manual or automated way.

Rakic et al. [25] propose DeSi to support flexible and tailorable
specification, manipulation, visualization, and (re)estimation of
deployment architectures for large-scale, highly distributed sys-
tems. They focus on how to take the availability into account in
the deployment, including defining a formal foundation and inves-
tigating six algorithms to automatically generate the deployment
plan. However, in DeSi, the formal specification of the deployed
application has to be written by hand and some values in the speci-
fication are difficult to retrieve without the support of runtime
environments. On the other hand, the formal specification can be
automatically generated in CADTool with the plentiful knowledge
derived from the development and runtime states of hosts. In our
opinion, the work of DeSi can improve the reliability calculation
of CADTool, which is under development.

Software Architecture in Maintenance
Oreizy et al. [23] study how SA can support corrective, perfective
and adaptive evolution at runtime and experiment on C2, a layered,
event-based architectural style. Garlan et al. [8] use the gauges to
collect the states and behaviors of the underlying system and adapt
the system according to some special requirements at runtime.
Rosenblum et al. [26] investigate the architectural concerns in the
component interoperability framework and combine the JavaBean
model with C2 style. Bril et al. [2] provide a toolset, called URSA,
to support program understanding and complexity management in
Philips. In these approaches, SA at development is used as a
document at hand, that is, such SA cannot accurately and up-to-
date describe the target system. And changes made on SA do not
cause corresponding changes in runtime systems until maintainers
explicitly manipulate runtime systems in other ad hoc ways.

OpenORB [1] adds reflection ability into COM (Component
Object Model). It provides four self-representations, including SA
of the whole system, the interfaces of components, the interception
of components and resources. In fact, the complex views provided
by OpenORB and PKUAS are originated by the separation of con-
cerns in reflection proposed by Okamura et al. [22] and the archi-
tectural reflection proposed by Cazzola et al. [3]. But OpenORB
and PKUAS have quite different implementations. Firstly, Ope-
nORB represents the system in four independent views while
PKUAS represents all information in SA. Secondly, OpenORB
defines a set of reflective interfaces that the reflective COM ob-
jects have to implement. Then, developers of application compo-
nents have to be aware of reflection. In that sense, OpenORB just
implements a reflective component model, just like K-
Components [5] and FORMAware [20]. On the contrary, PKUAS
implements architectural reflection in a “pure” reflective middle-
ware way, that is, does not define such interfaces so that applica-
tion developers are unaware of reflection. In our opinion, both

ways have advantages and disadvantages and a reflective EJB
component model is under development to improve reflective
PKUAS.

Conclusion and Future Work

Making software architecture available in the whole software life-
cycle becomes a hot topic recently. This paper just presents our
practices and experiences on introducing SA from development
into deployment and maintenance. The most important contribu-
tion of this paper is that we analyze realistic requirements and
benefits of post-development SA and identify technical challenges
with demonstration on J2EE which is one of the most popular run-
time environments. Another important contribution is that we in-
vestigate methodological challenges for extending SA into the
whole software lifecycle.

There are many open issues to be addressed. Since our original
goal is to facilitate the construction of adaptive component based
systems via middleware, we will focus on how to model dynamic
SA enabled by middleware and how to utilize the knowledge em-
bedded in SA for making middleware based systems self-adaptive.

Acknowledgements

This effort is sponsored by the National Basic Research Program
(973) of China under Grant No. 2005CB321805; the National
Natural Science Foundation of China under Grant No. 90612011,
90412011, 60403030.

References

[1] Blair, G.S., Coulson, G., Andersen, A., and etc. 2001. The
Design and Implementation of Open ORB 2. IEEE Distrib-
uted Systems Online, 2(6).

[2] Bril, R.J., Feijs, L.M.G., Glas, A., Krikhaar, R.L. and Winter,
R.M. 2000. Maintaining a legacy: towards support at the ar-
chitectural level. Journal of Software Maintenance: Research
And Practice, 12:143–170.

[3] Cazzola, W., A. Savigni, Sosio, A. and Tisato, F. 1998. Ar-
chitectural Reflection: Bridging the Gap Between a Running
System and its Architectural Specification. 6th Reengineer-
ing Forum.

[4] Dearle, A., G. Kirby, A. McCarthy. A Framework for Con-
straint-Based Deployment and Autonomic Management of
Distributed Applications. International Conference on Auto-
nomic Computing, 2004, pp 300-301.

[5] Dowling, J. and V. Cahill. The K-Component Architecture
Meta-Model for Self-Adaptive Software. In Proceedings of
Reflection 2001, LNCS 2192, pp.81-88.

[6] Garlan, D., Software Architecture: A Roadmap, The Future
of Software Engineering 2000, Proceedings of 22nd Interna-
tional Conference on Software Engineering, ACM Press,
2000, 91-101.

[7] Garlan, D., B. Schmerl, Using Architectural Models at Run-
time: Research Challenges, European Workshop on Software
Architectures, 2004, pp. 200-205.

[8] Garlan, D., Schmerl, B. and Chang, J.C. Using Gauges for
Architecture-Based Monitoring and Adaptation. The Work-
ing Conference on Complex and Dynamic Systems Architec-
ture, Brisbane, Australia, 12-14 December, 2001.

[9] Huang, G., H. Mei, Q.X. Wang. Towards Software Architec-

ture at Runtime. ACM SIGSOFT Software Engineering
Notes, Vol. 28, No. 2, March 2003.

[10] Huang, G., Mei Hong, Yang Fuqing. Runtime Recovery and
Manipulation of Software Architecture of Component-based
Systems. Journal of Automated Software Engineering,
Springer, Springer, Vol. 13 No. 2, 251-278, Feb. 2006.

[11] Huang, G., Meng Wang, Liya Ma, ling Lan, Tiancheng Liu,
Hong Mei. Towards Architecture Model based Deployment
for Dynamic Grid Services. In Proceedings of IEEE Interna-
tional Conference on E-Commerce Technology for Dynamic
E-Business, 2004, pp. 14-21.

[12] Huang, G., Tiancheng Liu, Hong Mei, Zizhan Zheng, Zhao
Liu, Gang Fan. Towards Autonomic Computing Middleware
via Reflection. In Proceedings of Annual International Com-
puter Software and Application Conference (COMPSAC),
2004, pp. 122-127.

[13] Kruchten, P. The 4+1 view model of architecture. IEEE
Software, 1995, Vol. 12, No. 6, pp. 42–50.

[14] Lan, L., Gang Huang, Liya Ma, Meng Wang, Hong Mei,
Long Zhang, Ying Chen. Architecture based Deployment of
Large-Scale Component based Systems: the Tool and Princi-
ples. Proceedings of 8th International SIGSOFT Symposium
on Component-based Software Engineering (CBSE), LNCS
3489, 2005, pp. 123-138.

[15] Llambiri, D., Alexander Totok, Vijay Karamcheti. Efficiently
Distributing Component-Based Applications Across Wide-
Area Environments. 23rd International Conference on Dis-
tributed Computing Systems (ICDCS 2003), pp. 412-421.

[16] Medvidovic, N., Taylor R. A Classification and Comparison
Framework for Software Architecture Description Languages,
IEEE Transactions on Software Engineering, 2000, Vol.26,
No.1: 70-93.

[17] Mei, H. and G. Huang. PKUAS: An Architecture-based Re-
flective Component Operating Platform, invited paper, 10th
IEEE International Workshop on Future Trends of Distrib-
uted Computing Systems, 2004, pp. 163-169.

[18] MEI, H., Gang HUANG, W.T. TSAI, Towards Self-Healing
Systems via Dependable Architecture and Reflective Mid-
dleware. 10th IEEE International Workshop on Object-
oriented Real-time Dependable Systems (WORDS 2005),
Feb 2-4, 2005, Arizona.

[19] Mei, H., F. Chen, Q. Wang and Y. Feng. ABC/ADL: An
ADL Supporting Component Composition. 4th International
Conference on Formal Engineering Methods (ICFEM 2002),
pp. 38-47.

[20] Moreira, R.S., G. S. Blair, E. Carrapatoso. A Reflective
Component-Based & Architecture Aware Framework to
Manage Architecture Composition. 3rd International Sympo-
sium on Distributed Objects and Applications (DOA 2001).
pp. 187-196.

[21] Object Management Group. Unified Modeling Language
Specification, Version 1.5, formal, 2001.

[22] Okamura, H., Y. Ishikawa, and M. Tokoro. AL-1/D: A Dis-
tributed Programming System with Multi-Model Reflection
Framework, Proc. Int’l Workshop on Reflection and Meta-
level Architectures, Japan, 1992, pp. 36-47.

[23] Oreizy, P., N. Medvidovic, R. N. Taylor. Architecture-based
runtime software evolution. 20th International Conference on
Software Engineering, 1998, pp 177-186.

[24] Perry D. and A. Wolf, Foundations for the Study of Software
Architecture, ACM SIGSOFT Software Engineering Notes,
1992, 17(4): 40-52.

[25] Rakic, M.M., S. Malek, N. Beckman and N. Medvidovic, A
Tailorable Environment for Assessing the Quality of De-
ployment Architectures in Highly Distributed Settings, 2nd
International Working Conference on Component Deploy-
ment, Edinburgh, UK, 2004.

[26] Rosenblum, D.S. and Natarajan, R. 2000. Supporting Archi-
tectural Concerns in Component Interoperability Standards,
IEE Proceedings – Software, 147(6):215-223.

[27] Shaw, M., D. Garlan, Software Architecture: Perspectives on
an Emerging Discipline, Prentice Hall, 1996.

[28] Soley, R. and the OMG Staff Strategy Group, Model Driven
Architecture: OMG White Paper, Draft 3.2,
http://www.omg.org/mda, Nov 27th, 2000.

[29] SUN Microsystems, Enterprise JavaBeans Specification,
Version 2.0, Final Release, 2001.

[30] SUN Microsystems, Java 2 Platform Enterprise Edition
Specification, Version 1.3, 2001.

[31] Tu, Q. and M.W. Godfrey, The Build-Time Software Archi-
tecture View, IEEE International Conference on Software
Maintenance (ICSM 2001), pp. 398-407.

[32] Van Deursen, A. Software Architecture Recovery and Mod-
eling: [WCRE 2001 discussion forum report]. ACM SIGAPP
Applied Computing Review, 2002, 10(1): 4-7.

[33] Zhu, Y., Gang Huang, Hong Mei, Modeling Diverse and
Complex Interactions Enabled by Middleware as Connectors
in Software Architectures. Accepted by the 10th IEEE Inter-
national Conference on the Engineering of Complex Com-
puter Systems (ICECCS), Shanghai, China, 16-20 June 2005.

[34] Zhu, Y., Gang Huang, Hong Mei, Quality Attribute Scenario
Based Architectural Modeling for Self-Adaptation Supported
by Architecture-based Reflective Middleware, In Proceed-
ings of 11th Asia Pacific Software Engineering Conference
(APSEC), 2004, pp. 2-9.

