
AGILE SOFTWARE
DEVELOPMENT

Keith Pine Kumeel Alsmail Parker Li Björn Davis• • •

INTRODUCTION TO AGILE

• What is Agile?

• Origins of Agile

• Does Agile Work?

• Methodologies

WHAT IS AGILE?

• A set of software methodologies that are based on iterative
development

• Requirements are expected to change, and response to
change is rapid

• Time-boxed releases

PLAN-DRIVEN VS ITERATIVE

• Plan-driven methods need requirements in advance

• Waterfall

• Requirements are relatively static

• Iterative methods expect change

• Spiral-model

• Evolutionary processes

• and Agile

PROJECT CONSTRAINTS

PLAN
driven

VALUE
driven

Fixed

Estimated

Requirements

Resources Time Features

Resources Time

Waterfall Agile

TRADITIONAL DEVELOPMENT

Ideas Define Code Integrate Test Final
Product

AGILE DEVELOPMENT

Ideas

Define

C
odeTe

st

i1

Define

C
odeTe

st

Define

C
odeTe

st

Define

C
odeTe

st

i2 i3

Final
Product

Review & Adjust
Review & Adjust

Review & Adjust

PREDECESSORS OF AGILE

Scrum

Crystal DSDM

FDD XP

ASD

ORIGINS

• February 2001 at Snowbird Ski Resort

• 17 representatives of emerging ‘lightweight’ methods met to
find a common ground

• Kent Beck, Alistair Cockburn, Ward Cunningham, Martin
Fowler, Jim Highsmith, Bob Martin, etc.

• Looking for freedom from “Dilbertesque corporations”

• The term “Agile” was coined

MANIFESTO FOR AGILE
SOFTWARE DEVELOPMENT

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

12 PRINCIPLES
1. Customer satisfaction through early and continuous delivery of valuable software

2. Changing requirements are welcome, even late in development.

3. Deliver working software as quickly as possible

4. Daily cooperation between business people and developers

5. Build projects around motivated individuals, and provide the support they need

6. Face-to-face conversation is the most efficient and effective method of communication

7. Progress is primarily measured through working software

8. Sustainable development is promoted

9. Continuous attention to technical excellence and good design

10.Simplicity – the art of maximizing the amount of work not done – is essential

11.Self organizing teams produce the best architectures, requirements and designs

12.Regular reflection by the team is key to becoming more effective

PRINCIPLES NOT RULES
• Values and Principles

• Not a pre-defined process

• Context sensitive to each team and project

• Common recommendations

• iterations no longer than a month long

• each iteration should result in something that everyone agrees is “done” with
feedback from the stakeholders

• figure out what you’re doing at the start of the iteration

• reflect on accomplishments/failures at the end of the iteration

• non-stop communication

BENEFITS OF AGILE

• Able to quickly respond to changing requirements and
priorities

• Lower cost and risk

• Continuous integration and delivery - more visibility into
project progress

• Business value is prioritized

• Delivers business value early and often

DOES AGILE WORK?
• Scott Ambler (Practice Leader for Agile Development with IBM) - Agile Adoption Rates Survey

• How have agile approaches affected your productivity?

• 60% report increased productivity

• 34% report no change

• Only 6% claimed lowered productivity

• How have agile approaches affected the quality of systems deployed?

• 66% responded that quality is higher

• About 30% said no change in quality

• How have agile approaches affected business stakeholder satisfaction?

• 58% reported improved satisfaction

• 3% report reduced satisfaction.

DOES AGILE WORK?
• VersionOne - “The State of Agile Development” 2011 (6,042 responses)

Increased Productivity

Faster time-to-market

Enhanced software quality

Reduce cost

0% 25% 50% 75% 100%

Benefits Obtained From Implementing Agile

Got Better No Benefit
Got Worse Don’t Know

75% 5%

71% 15%

68% 17%

49% 28%

DOES AGILE WORK?

568% more
value

delivered in
the first year

of being agile.

Salesforce.com

Source: Salesforce.com, Green & Fry & Mountain Goat Software

DOES AGILE WORK?
Faster time to market

Source: Mah 2008 & Mountain Goat Software

Agile
projects are
16% more

productive at
a statistically

significant
level of

confidence.

DOWNSIDES OF AGILE

• Releases may be to often for customers to handle (enterprise
software)

• Technical debt

• Documentation can be lacking

• Hard to scale properly, may require colocation

SHOULD YOU USE AGILE?
U

nc
er

ta
in

ty

Project Complexity
Low

Low

High

High

CowsSheepdogs

Colts Bulls

Simple, young projects.
Need agility.
Tight Teams.

Laissez faire

Agility to handle uncertainty.
Process definition to cope
with complexity.

Complex, mature market.
Need defined interfaces.

SHOULD YOU USE AGILE?

• Better than chaos

• Easier to transition to a lightweight method than heavyweight

• Easier to follow with less bureaucracy

• Co-operative team

• Strong business leadership

• Requires alignment with company philosophy and culture

WHEN NOT TO USE AGILE

• Heavyweight methodologies can be successful when:

• Requirements rarely change

• The technology is mature

• New and unknown is minimal

• It’s been done before

• How many projects fit that description?

AGILE METHODOLOGIES

• Crystal Methods (Crystal Clear, Yellow, Orange and Red)

• Feature Driven Development (FDD)

• Extreme Programming (XP)

• Dynamic Systems Development Method (DSDM)

• Scrum

• Adaptive Project Framework (APF)

ADAPTIVE SOFTWARE
DEVELOPMENT

AGILE

ADAPTIVE PROJECT
FRAMEWORK (APF)

• General approach

• Fundamental concept scope is variable within time and cost constraints

• Maximizes business value

• Client focused and Client driven

• Change is embraced and not avoided

• Just in time planning

• Principle that you learn by doing

APF CORE VALUES
• Client-focused

• Client-driven

• Incremental results early and often

• Continuous questioning and introspection

• Change is progress to a better solution

• Don’t speculate on the future

• Emphasizes “learning”

• Iterative

• Time-boxed

• Risk driven and change-tolerant

APF LIFE CYCLE

APF – VERSION SCOPE

VERSION SCOPE

• COS is input to decision on what PMLC model to be used
and then write POS.

• Five components of scope triangle are prioritized for decision
making and problem solving in cycle build phase

APF – SCOPE TRIANGLE

PRIORITIZATION APPROACHES
FOR SCOPE TRIANGLE

• Forced Ranking

• Paired Comparison

• MoSCoW

PRIORITIZATION APPROACHES
– FORCED RANKING

MANAGER
FUNCTION

A B C D RANK SUM FORCED RANK

1 2 3 2 4 11 3

2 4 1 1 2 8 1

3 6 2 5 5 18 5

4 1 5 3 1 10 2

5 3 4 4 3 14 4

6 5 6 6 6 23 6

PRIORITIZATION APPROACHES
– PAIRED COMPARISON

1 2 3 4 5 6 SUM RANK

1 X 1 1 0 1 1 4 2

2 0 X 1 0 1 1 3 3

3 0 0 X 0 0 1 1 5

4 1 1 1 X 1 1 5 1

5 0 0 1 0 X 1 2 4

6 0 0 0 0 0 X 0 6

PRIORITIZATION
APPROACHES - MOSCOW

	

 M: Must Have

	

 S:	

 Should Have

	

 C:	

 Could Have

	

 W:	

 Would be Nice to Have

APF – SCOPE TRIANGLE
RANKING

Priority
Critical

(1) (2) (3) (4)
Flexible

(5)

Scope ✗

Quality ✗

Time ✗

Cost ✗
Resource
Availability ✗

APF – CYCLE PLAN

APF CYCLE PLANNING EFFORT

• Extract from the WBS the functions to be built

• Complete the extracted WBS down to the task level

• Build the dependency network diagram

• Partition the tasks into independent meaningful groups and
assign teams to each group

• Each team will develop a plan and schedule

APF – RESOURCE LOADED
SCHEDULE

CYCLE BUILD
• Conduct detailed planning for producing the

functionality assigned to this cycle

• Begin cycle work

• Monitor and adjust cycle build

• Create a Scope Bank

• Create Issues

• Build Cycle Functionality

• Monitoring and Control

Measuring Team Strength:
TS = # of We’s / # of I’s + # We’s

CYCLE BUILD
• Monitor and Control:

• Team status meeting

• Major issues are posted in Issue Log

• Close Cycle:

• Time Box expired

• All swim lanes competed early

• A major problem occurs

CLIENT CHECKPOINT
• Client and project team

perform a quality review of
the functionality produced

• The sequence Cycle Plan /
Cycle Build / Client
Checkpoint is repeated

• Operate as Co-project
manager

If the client accepts everything, the
team will move to the next cycle.

SCOPE BANK
• Identify and prioritize Probative Swim Lane

• Identify and prioritize Integrative Swim Lane

POST-VERSION REVIEW

• Determine if the expected business outcome was realized

• Determine what was learned that can be used to improve the
solution

• Determine what was learned that can be used to improve the
effectiveness of APF

ADAPTING APF
Proof of Concept

Cycle
Revising the Version

Plan Embedding APF

IMPLEMENTING APF

PM

Team Member Sponsor

Client

Bottom-up Team
Member

SM

There are too many
failed projects

EXTREME PROGRAMMING

WHAT IS EXTREME
PROGRAMMING (XP)?

• A software development methodology which is intended to
improve software quality and responsiveness to changing
customer requirements.

• As a type of agile software development, it advocates frequent
"releases" in short development cycles.

• Help improve productivity and introduce checkpoints where
new customer requirements can be adopted.

HISTORY

• Extreme programming was created
by Kent Beck during his work on
the Chrysler Comprehensive
Compensation System (C3)
payroll project.

• Beck became the C3 project
leader in March 1996 and began
to refine the development method
used in the project and wrote a
book on the method (in October
1999, Extreme Programming
Explained was published)

http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_System
http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_System
http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_System
http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_System
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Project_management

GOAL OF XP

XP attempts to reduce the
cost of changes in
requirements by having
multiple short development
cycles, rather than a long one.

XP - PROCESS

• Planning

• Designing

• Coding

• Testing

XP - PLANNING
• User Stories

• Functionalities of the system are
described using stories, short
descriptions of customer-visible
functionalities

• Small & Short Releases

• Every release should be as small as
possible, containing the most
valuable business requirements

• It is far better to plan a month or
two at a time than six months or a
year at a time

XP - DESIGNING

• Simple Design (KISS)

• CRC Cards: Class, Responsibility, Collaborator

• Spike Solutions

• Refactoring

SIMPLE DESIGN

• Misconception about XP: XP advises to avoid design

• Truth: XP advises:

• Avoid too much Up Front Design / extra design at early
phase, as requirement is not clear.

• Simple and elegant design

• Avoid over design

CRC CARDS

• Used to identify Classes, Responsibilities,
& Collaborations between objects

• Created from index cards with with this
information:

• Class name

• Responsibilities of the class

• Names of other classes with which
the class will collaborate to fulfill its
responsibilities.

• Author

SPIKE SOLUTION

1. A design problem occurs

2. Create a PROTOTYPE of that portion
of the design

3. Implement and evaluate the prototype

Intent:
To lower the risk when true implementation starts.

REFACTORING

Changing a software system in such a way that:

1. The internal structure is improved

2.The external behavior is not altered (not changed)

Also means:

Design occurs CONTINUOUSLY as the system is constructed

XP - CODING

COMMON PRACTICES

• Code the Unit test first

• Pair Programming

• Continuous Integration (CI)

• Leave Optimization until last

http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Program_optimization
http://en.wikipedia.org/wiki/Program_optimization

PAIR PROGRAMMING
• Two people work together at one

computer to create code for a story

• This provides a mechanism for real-
time problem solving and real-time
quality assurance

• Keeps the developers focused on
the problem at hand

• As pair programmers complete their
work, the code they develop is
integrated with the work of others

CONTINUOUS INTEGRATION
• Avoidance of “big bang” integrations

• Integration for each pair occurs several times each day

• All tests run prior to commitment to code base

• Makes the cause of failures more obvious

• Minimizes merge pain

• Facilitates the code base evolving steadily

• Forces bug fixing to occur immediately

• Often supplemented by daily builds

• Contributes to the avoidance of quality & integration debt

CODING STANDARDS
• Consensus of coding style and

practices

• Facilitates moving about the code base

• Contributes to definition of clean code
and “doneness”

• Removes distraction of endless
arguments

• Goal is that code looks anonymous

• Standards evolve over time

XP - TESTING

TESTING PRACTICES

• All code should have Unit Tests

• All code must pass all unit tests before it
can be released

• When a bug is found tests are created

• Unit Tests and Acceptance tests are run often and the score is
published

UNIT TESTS

• Unit tests are written before
the code

• Tests are run to ensure that
the software fails

• A good test case is one that
ensures that the software fails

• Test is rerun until it passes

ACCEPTANCE TEST

• Also known as customer tests

• They are specified by the
customer

• They focus on the overall system
features and functionality that are
visible and reviewable by the
customer

• They are derived from user
stories

Hint:

Fixing small problems every few hours takes less
time than fixing huge problems just before the
deadline.

WHEN TO USE XP?

• Dynamically changing requirements

• Risky projects

• Small development groups (up to 100)

• Non-fixed price contract

DYNAMIC SYSTEMS
DEVELOPMENT METHOD

INTRODUCTION TO DSDM

• An iterative and incremental approach that emphasis continuous
user involvement

• DSDM became the number one framework for Rapid
Application Development (RAD)

• Most mature agile development method

• DSDM is about people, not tools

• It seems ideally suited for software development that place a high
importance on the user interface or usability aspects of products.

HISTORY OF DSDM

• Developed in the United Kingdom
in the 1990’s and was first released
in 1995

• Developed by several vendors and
experts in the field of Information
Systems (IS), combining their best
practice experiences

9 PRINCIPLES OF DSDM
1. Active user involvement is imperative

2. Team must be empowered to make decisions

3. Focus is on frequent delivery

4. Fitness for business is criterion for acceptance of deliverables

5. Iterative and incremental development is mandatory

6. All changes during development must be reversible

7. Requirements are base-lined at high-level

8. Testing is integrated throughout the cycle

9. Collaborative and Co-operative approach

PHASES OF DSDM

Pre-project

Includes project suggestion and selection of a proposed
project candidate.

Feasibility study

Definition of the problem to be addressed, assessments of
the likely cost and technical feasibility of delivering of a
computer system to solve the business problem.

PHASES OF DSDM

Business Study

This stage examines the influenced business processes, user
groups involved and their respective needs and wishes.

Functional Model Iteration (FMI)

The focus is on refining and studying the business-based
aspects of the computer system.

PHASES OF DSDM

Design and Build Iteration

The product is designed
and developed in iterations.

In each iteration a design
model is made of the area
being developed, and then
that area is coded and
reviewed.

PHASES OF DSDM

Implementation

Product is wrapped up.

Documentation is written.

Review is drawn up.

Compare the requirements with their fulfillments in the product.

The users are trained in how to use the system, and the users
give approval to the system

PHASES OF DSDM

Post-project

Post-project tasks include measurements on how the
deployed system is performing and if any further
enhancements are required.

PROJECT LIFE CYCLE OVERVIEW

ADVANTAGES OF DSDM

• Active user participation throughout the life of the project
and iterative nature of development improves quality of
the product

• Ensures rapid, effective and maintainable deliveries which
match the needs of the business better

• Both of the above factors result in reduced project costs

LIMITATIONS OF DSDM

• Requires significant user involvement

• Switching to DSDM is neither cheap nor fast, and requires a
significant cultural shift in any organization

COMPANIES USING DSDM

SCRUM

HISTORY

• Started out as “rugby approach”

• Applied to commercial product
development

• Team tries to “go the distance as a
unit, passing the ball back and forth”

• Emphasized speed & flexibility

• Became “Scrum,” referring to a restart
in rugby, or the huddle

WHAT IS SCRUM?
• Not just a standup meeting every day

• “An agile framework for completing complex projects.” – Scrum Alliance

• Iterative and incremental process

• Repeatable way to divide larger projects into manageable pieces

• Projects are divided into pieces called Sprints

• Teams are self-organizing and cross-functional

• No reliance on other groups to deliver

• Team members under different disciplines are physically close to each other

• 3 main lists (artifacts), meetings, and roles

OVERVIEW OF THE PROCESS

SPRINTS
• Typically last 1 to 4 weeks

• Preceded by a Sprint planning meeting

• Team works on completing the items in the
Sprint backlog

• No changes allowed to the Sprint backlog once
the Sprint has started

• At the end of every Sprint, the team presents a
usable product

• Sprint review meeting

• After the current Sprint is finished, begin the
next one

ARTIFACTS: PRODUCT
BACKLOG

• Prioritized list of everything needed in the
product

• Single source of requirements for any changes to
be made to the product

• Constantly evolving and changing

• Attributes - description, order, estimate

• May contain features, bug fixes, requirements,
etc.

• As product is used and feedback acquired,
product backlog will grow

ARTIFACTS: SPRINT BACKLOG
• The set of Product Backlog items

selected for the current Sprint

• A forecast of what functionality will be
in the next increment of work

• Modified throughout the Sprint

• Belongs to the Development Team only

• Real-time picture of the team’s status

• Only the team can add/remove items

ARTIFACTS: BURNDOWN
CHART

• Typically a single person

• Represents the voice of the customer – communicates the vision of the
product to the Development Team

• Maximizes value of the product and work of the Development Team

• Responsible for delivering the best possible product within time and budget

• Solely responsible for managing the Product Backlog

• Content

• Organization

• Organization must respect the Product Owner’s decisions (visible in the
Product Backlog’s content/organization)

• Similar to a sports coach – sets up the plan, focuses the team on the goal
and then lets them execute it

ROLES: PRODUCT OWNER

ROLES: DEVELOPMENT TEAM
• Responsible for delivering a potentially shippable product at the end of

every Sprint

• Cross-functional skills ensure independence from other groups

• Self-organizing (still may meet with project management) – only ones
who decide how to turn backlog into releasable increments

• No titles (other than Developer)

• No sub-teams

• Optimum size is 3-9 members

• Smaller : skill constraints, smaller increments

• Larger : excessive coordination and complexity

ROLES: SCRUM MASTER

• Servant-leader for the team

• Makes certain the Scrum process is understood

• Ensures the team adheres to Scrum theory and practices

• Enforces the rules - part of the Scrum Master’s job is as the referee

• Remove obstructions in the team’s way

• Buffer between the team and distracting influences

• Acts like a liaison between Product Owner and Development Team

MEETINGS: SPRINT PLANNING
• Designates what work will be done in the current Sprint

• Takes items from the top of the Product Backlog and places them in the
Sprint Backlog

• Product Owner presents the Product Backlog items to the Development
Team

• Development Team solely decides the number of items to be placed into the
Sprint Backlog

• Product Owner can clarify selected Product Backlog items and help make
trade-offs

• Development Team can renegotiate work with Product Owner if there is too
much/little

MEETINGS: DAILY SCRUM
• Usually a stand-up meeting that lasts no longer than 15 minutes

• Assesses daily progress made by the Development Team

• Only Development Team members speak (others may attend)

• Each member of Development Team:

• What has been accomplished since last meeting?

• What will be done before next meeting?

• What obstacles are in the way?

• Scrum Master’s role is to facilitate the resolution of these
obstacles/impediments and keep the meeting under 15 minutes

MEETINGS: SPRINT REVIEW
• Performed after Sprint is finished

• Review work completed/incomplete

• Present/demonstrate completed product to
stakeholders

• Incomplete work is not demonstrated

• Discuss what went well, which problems arose, and how they were solved

• Product Owner discusses Product Backlog as it stands

• Entire group collaborates on what to do next and prepare for the next Sprint
Planning meeting

• End result: revised Product Backlog

OTHER MEETINGS

• Sprint Retrospective

• Scrum of Scrums

• Backlog grooming

SPRINT RETROSPECTIVE

• Team members reflect on the past sprint

• Lessons learned

• Process improvements – plan to improve the next Sprint

SCRUM OF SCRUMS

• Used in scaling Scrum to large project teams

• A representative from each Daily Scrum Meeting
conducts their own Scrum Meeting

• What has your team done since we last met?

• What will your team do before we meet again?

• Is anything slowing your team down or getting in
their way?

• Are you about to put something in another team’s
way?

BACKLOG GROOMING

• Team spends time during the Sprint to do backlog
grooming

• Estimating backlog effort

• Refining acceptance criteria for backlog items

PROS
• Breaks down projects into smaller, digestible chunks in a methodical way

• Each team member carries responsibility and ownership

• Increased communication

• Daily Scrum Meetings

• Physical location of team members

• Provides quantified progress

• Constant and current status updates (can be a con)

• Customer can update/change requirements

• Constant feedback from customer through regular demonstrations of iterations

• Low up front documentation

• Developers can choose what they take on

CONS

• Even with Scrum of Scrums Meetings, large scale projects may present
complications. For example, system testing may become difficult.

• Meetings and planning can be excessive – takes time away from
development

• Have to update status constantly

• Shorter iterations have higher overhead

• Possibility of scope creep (items keep getting added to Project
Backlog)

WRAP UP

• Adoption of Agile in the Industry

WHO’S USING AGILE?

Source: VersionOne - “The State of Agile Development” 2011

How Many Teams
Adopted Agile?

Number of
Company Projects
Using Agile

How Many Organizations have
adopted agile development?

How long have respondents been
practicing agile development?

WHO’S USING AGILE?

Financial
Services

Government

Healthcare

Media &
Entertainment

Regulated
Industries

Tech

Telecom

Q&A

Keith Pine Kumeel Alsmail Parker Li Björn Davis• • •

REFERENCES

• Ambysoft - http://www.ambysoft.com

• State of Agile Development Survey Results - http://
www.versionone.com/state_of_agile_development_survey/11/

• Manifesto for Agile Software Development - http://
agilemanifesto.org/

• Marting Fowler, The New Methodology - http://
martinfowler.com/articles/newMethodology.html

http://www.ambysoft.com/
http://www.ambysoft.com/
http://www.versionone.com/state_of_agile_development_survey/11/
http://www.versionone.com/state_of_agile_development_survey/11/
http://www.versionone.com/state_of_agile_development_survey/11/
http://www.versionone.com/state_of_agile_development_survey/11/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html

REFERENCES

• Williams, Laurie, A Survey of Agile Development Methodologies
- http://agile.csc.ncsu.edu/SEMaterials/AgileMethods.pdf

• Rally Software - http://www.rallydev.com

• Mountain Goat Software - Reported Benefits of Agile
Development

• Wysocki, Robert K., 2009. Effective Project Management.

• Slideshare.net

http://agile.csc.ncsu.edu/SEMaterials/AgileMethods.pdf
http://agile.csc.ncsu.edu/SEMaterials/AgileMethods.pdf
http://www.rallydev.com/
http://www.rallydev.com/

