ﬁ“ Annals of Software Engineering 14, 93-114, 2002
“ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Testing Processes of Web Applications

FILIPPO RICCA and PAOLO TONELLA {ricca, tonella} @itc.it
ITC-irst, Istituto per la Ricerca Scientifica e Tecnologica, Via alla cascata, 38050 Povo (Trento), Italy

Abstract. Current practice in Web application development is based on the skills of the individual program-
mers and often does not apply the principles of software engineering. The increasing economic relevance
and internal complexity of the new generation of Web applications require that proper quality standards
are reached and that development is kept under control. It is therefore likely that the formalization of the
process followed while developing these applications will be one of the major research topics.

In this paper we focus on Web application testing, a crucial phase when quality and reliability are
a goal. Testing is considered in the wider context of the whole development process, for which an incre-
mental/iterative model is devised. The processes behind the testing activities are analyzed considering the
specificity of Web applications, for which the availability of a reference model is shown to be particularly
important. The approach proposed in this paper covers the integration testing phase, which can take advan-
tage of some features of Web applications (e.g., the http protocol employed), thus resulting in a higher level
of automation with respect to traditional software.

The testing processes described in this paper are supported by the prototype research tool TestWeb. This
tool exploits a reverse engineered UML (Unified Modeling Language) model of the Web application to
generate and execute test cases, in order to satisfy the testing criteria selected by the user. The usage of this
tool will be presented with reference to a real-world case study.

1. Introduction

Most Web applications have insofar been developed without following a formalized
process model [Pressman 2000]. Requirements are not captured and the architecture and
detailed design of the system are not considered. Developers quickly move to the imple-
mentation phase and deliver the system without testing it. No documentation is usually
produced about the internal organization of the application. While this kind of practice
was motivated by the characteristics of the first generation of Web sites, now things are
changing and there is an increasing demand for better techniques, methodologies and
processes.

The delivery of Web based systems developed according to ad hoc methods and
with no consideration to the principles of software engineering was justified by the size
of these applications, which were typically small, by the estimated lifetime, which was
expected to be short, and by the difficulties to capture the user needs, both those to be
satisfied by the initial release of the application and those that were considered likely to
emerge in the future. Moreover, the first generation of Web sites were little more than
fixed advertising material made publicly available: they had no particular relevance for
the core business.

94 RICCA AND TONELLA

Soon companies realized that the Web is not just a way to promote their image,
but can be exploited as a means to provide services. At the same time, several tech-
nologies have been developed to support the production of increasingly complex Web
applications, which can be effectively exploited to support the main company business.
Consequently, these applications have begun to be critical for the companies and to in-
corporate advanced functionalities. The next step in this evolution path will be to absorb
some of the lessons learned during the history of software engineering, which started
being considered when the practice of software development suffered similar problems
as the current one for Web based systems.

While substantial effort was devoted to investigating models and formalisms aimed
at supporting the design of Web applications [Bichler and Nusser 1996; Conallen 2000;
Isakowitz et al. 1997], only few works considered the problems related to Web site
maintenance [Antoniol et al. 2000; Warren et al. 1999] and testing [Chang and Hon
2000; Liu et al. 2000; MacIntosh and Strigel 2000; Miller 1998].

The existence of problems, in Web site development, similar to those encountered
in software before the advent of software engineering are recognized in [Warren et al.
1999], where the evolution of Web sites is characterized by means of metrics.

Statistical testing is proposed in [Chang and Hon 2000] for the automatic selection
of the paths to be exercised in a Web application. The number of invalid links (discussed
in section 4) encountered along the test paths allows estimating the site reliability, i.e.,
probability that a user completes the navigation without errors. The CAPBAK/Web tool,
explained in [Miller 1998], is a Web testing tool that supports functional testing and re-
gression testing. In [Liu et al. 2000] an approach to data flow testing of Web applications
is presented. In their approach, the structural test artifacts of a Web application are cap-
tured in a Web application Test Model where each component of a Web application is
considered as an object. Data flow test cases for Web applications are derived from flow
graphs in five levels according to the types of definition use chains for the variables of
interest.

In this paper the testing processes of Web applications are considered in the larger
context of Web application development, for which the availability of a reference model
is central to several activities, such as understanding of the existing system, assessment
of the required changes and implementation of the modifications. The testing phase is
also expected to benefit from a structural model of the application, which is the starting
point for white-box testing. In particular, we will focus on integration testing of Web
applications, where the specific features of these applications, compared with traditional
software, can be exploited to improve the level of automation and simplify the testing
procedures. A support tool will be presented with reference to a real world case study,
showing that a practical use of the proposed techniques is affordable.

The paper is organized as follows. Section 2 provides a candidate process model for
the development of Web applications, based on their specific characteristics. Section 3
describes the reference model that will be used for testing. An overview on the testing
processes of Web applications is given in section 4, while the next section focuses on
integration testing and contains the authors’ approach to white-box testing. Then, the

TESTING PROCESSES OF WEB APPLICATIONS 95

tool that automates integration testing is described in section 6 and its usage aimed at
testing an existing Web application chosen as a case study is presented in section 7.
Section 8 contains some concluding remarks.

2. A process model for the development of Web applications

Some features of Web applications and of their development context are very peculiar, so
that it is not possible to directly apply the same methods used in software engineering:
they rather need some adaptations. Before considering a candidate process model for
the development of Web applications, let us consider their main characteristics, which
motivate the choice of an incremental/iterative model:

Web applications have short delivery times.

Web applications are subject to a tremendous pressure for change.

e Turn over of Web application developers is high.

Complexity and criticality of Web applications are increasing.
e User needs evolve quickly.

An incremental/iterative process model (see figure 1) assumes that functionalities
are delivered to the user incrementally, by traversing several times the different develop-
ment phases. At each iteration an increment is considered (delta), which is sufficiently
small to be completely implemented in a short time interval. After each iteration a com-
plete Web application is delivered, which improves over the previous version because
some functionality is added, changed or enhanced.

This process model allows short delivery times and can easily incorporate the
change requests coming from the user or from the support technologies. New business
opportunities can also push for major changes in the application, which can be achieved
by iterating several times through a sequence of finer grain modifications.

While it limits the overhead that may delay the production of a working release,
this process model contains all elements necessary to approach the higher complexity

Understanding

s model update

A Design

Initial

plan change assessitient_

reverse engincering

A Requirements

A Implementatiol
impact analysis

structural test/test case generation

A Tesling

\—> Delivery

Figure 1. Incremental/iterative process model for the development of Web applications.

96 RICCA AND TONELLA

of new Web applications. It assumes the existence of requirements and design, so that
a new developer is not left only with the code of the application, but can find useful
documentation about it. It also attacks the problem of ensuring the needed reliability of
these applications by formalizing a testing phase.

The most distinctive feature of the process sketched in figure 1 is the central role of
the model of the Web application. Such a model is updated each time a design increment
is introduced and is exploited for change assessment each time a requirement increment
has to be mapped into the design. In fact, it allows estimating the portion of the appli-
cation affected by the change, thus supporting the allocation of the change to a proper
iteration and, if needed, the split of the change into smaller pieces.

When moving to the implementation, a model of the “as is” system can be retrieved
from the code by means of reverse engineering, and can be used to evaluate the impact
of the modification in terms of the code portions to be updated. Developers are expected
to benefit from the availability of a reference model of the application, since their main
activities during the implementation of an increment are the understanding of the exist-
ing system and of the portions to be modified. Then, they have to implement the changes
and avoid undesirable ripple effects. These activities become particularly difficult in a
situation of high turn over, where the persons who developed the system are no longer
available and new programmers are charged of understanding and changing it. Reverse
engineering and impact analysis can assist programmers in this development phase and
a high level of automation can be reached if a proper model of Web applications is
adopted.

Finally, the Web application is tested. To reach high levels of reliability, structural
testing may be a useful complement to functional testing. Again, the availability of a
reference model allows the automation of several activities, related to test case produc-
tion, execution, to regression testing and to coverage measurement. In the next sections
a reference model for Web applications is described, which can be semi-automatically
recovered from the code and which can drive testing, becoming the starting point for
most testing processes. The same model is a central entity also for all other development
phases, as shown in figure 1.

3. A UML model of Web applications

Web applications exploit the navigation and interaction facilities of hypertextual HTML
pages to provide and ask information to/from the user. As a consequence, the model
proposed here emphasizes the navigation and interaction patterns over other architectural
perspectives. Alternative, more standard, architectural views could be given for the other
aspects.

Among the design models [Bichler and Nusser 1996; Conallen 2000; Isakowitz
et al. 1997] which have been proposed in support to Web development, those conceived
for the specification of the navigation and presentation structure of the site [Bichler and
Nusser 1996; Conallen 2000] are closer to ours. Higher level abstractions (e.g., the entity

TESTING PROCESSES OF WEB APPLICATIONS 97

relationship diagram of the RMM methodology [Isakowitz ef al. 1997]) are not adequate
for our purposes.

The Web site model closer to ours is that proposed by Conallen [2000]. Web pages
are considered first-class elements, and are represented as objects, using UML. Similarly,
all other architecturally relevant entities as, for example, links, frames, and forms, are
explicitly indicated in the model. The main difference between Conallen’s and our UML
model of Web applications is in the emphasis given to design versus analysis. In fact, the
model by Conallen aims at describing the site from a logical point of view, as required
when it is being designed, while we focused our model on the implementation of the
site, which is the starting point for testing.

In the following, a Web application is identified with all the information that can
be accessed from a given Web server. Documents accessed from different servers are
considered external to the given application. Testing of a Web application as well as the
extraction of its model are supposed to be conducted in the development environment.
Consequently, some information that cannot be accessed by external users browsing
the site is considered available. In some cases it can be extracted automatically from
artifacts used by the Web server (e.g., CGI scripts), while in other cases it is assumed to
be manually provided by the developers.

Figure 2 shows the meta model used to describe a generic Web application. It is
given in the Unified Modeling Language (UML) [Booch et al. 1998]. The central entity

LoadPagelntoFrame

{optional }

f: Frame Form

input: Set<Var>
hidden: Set<Couple>

E E E ¢ 0.* submit i
I link HTMLPage | | —
Lo ! split into
b W 1.4 4
I.,I_"_"I[_"_"_"_":_"_":_"_"_"_":J::::::::::::: ________ : L*
ConditionalEdge M Frame
1 {xor}
{optional, implicit-state only} initial page
c: Condition<Var> .
[T build link P
} redirgct [-----------1 arameter
rediect | {xorj | y 0% p: Set<Couple>
ServerProgram o0

use: Set<Var>

Figure 2. Meta model of a generic Web application. The model of a given site is an instantiation of it.

98 RICCA AND TONELLA

in a Web application is the HTMLPage. An HTML page contains the information to
be displayed to the user, and the navigation links toward other pages. It also includes
organization and interaction facilities (e.g., frames and forms). Navigation from page to
page is modelled by the auto-association of class HTMLPage named link.

Web pages can be static or dynamic. While the content of a static Web page is
fixed, the content of a dynamic page is computed at run time by the server (a similar dis-
tinction is proposed in [Conallen 2000] and [Eichmann 1999]) and may depend on the
information provided by the user through input fields. The class ServerProgram mod-
els the script/executable that runs on the server side and generates a dynamic HTML
output. When the content of a dynamic page depends on the value of a set of input
variables, the attribute use of class ServerProgram contains them. A server side pro-
gram may be executed by traversing a link from an HTML page whose target is the
server script/executable and whose attributes include a set of parameters, represented as
pairs (name, value). The server program can either redirect the request to another server
program (auto-association redirect), build an output, dynamic HTML page (association
build), or simply redirect to a static HTML page (association redirect). The latter two
cases can be distinguished only because the resulting HTML page is respectively static
or dynamic.

A frame is a rectangular area in the current page where navigation can take place
independently. Moreover the different frames into which a page is decomposed can in-
teract with each other, since a link in a page loaded into a frame can force the loading of
another page into a different frame. This can be achieved by adding a target to the hy-
perlink. Organization into frames is represented by the association split into, whose tar-
get is a set of Frame entities. Frame subdivision may be recursive (auto-association split
into within class Frame), and each frame has a unary association with the Web page ini-
tially loaded into the frame (absent in case of recursive subdivision into frames). When
a link in a Web page forces the loading of another page into a different frame, the target
frame becomes the data member of the (optional) association class LoadPagelntoFrame.

In HTML user input is gathered by exploiting a Form and is passed to a server
program, which processes it, through a submit link (see figure 2). A Web page can in-
clude any number of forms; accordingly, the cardinality of this link is arbitrary. Each
form is characterized by the input variables that are provided by the user through it (data
member input). Additional hidden variables are exploited to record the state of the in-
teraction. They allow transmitting pairs of the type (name, value) from page to page.
Typically, the constant value they are assigned needs be preserved during the interac-
tive session for successive usage. Since the HTTP protocol is stateless, this is the basic
mechanism used to record the interaction state (a variant is represented by the cook-
ies).

Since links, frames and forms are part of the content of a Web page, and for dy-
namic pages the content may depend on the input variables, even the organization of a
page is, in general, not fixed and depends on the input. This is the reason for the asso-
ciation class ConditionalEdge, which optionally adds a boolean condition, function of
the input variables, representing the existence condition of the association (which can in

TESTING PROCESSES OF WEB APPLICATIONS 99

turn be a link, a submit or a split into). The target, page, form or frame, is referenced by
the source dynamic page only when the input values satisfy the condition in the Con-
ditionalEdge. Similarly, the action performed by a server program may depend on the
input values, and therefore edges outgoing from ServerProgram may also be conditional.

The model described above is not adequate to support Web application testing in
cases in which the same server program behaves differently according to the interac-
tion state. To clarify this situation it is convenient to classify server programs into two
categories:

1. Server programs with state-independent behavior.
2. Server programs with state-dependent behavior.

Server programs in the first category exploit always the same mechanism to pro-
duce the output (either auto-redirect, redirect or build) and generate a dynamic page
whose structure and links are fixed. In other words, there is no ConditionalEdge object
attached to its links and to the links of its output page. The behavior of these pages is
the same in every interaction state. On the contrary, server programs in the second cat-
egory behave differently when executed under different conditions. A server program
may, for example, provide two completely different computations — and consequently
different output pages — according to the value of a hidden flag recording a previous
user selection. In this case, ConditionalEdge objects are used to distinguish the different
behaviors.

In presence of server programs with state-dependent behavior, the paths in the
model can still be interpreted as navigation sessions, provided that all ConditionalEdge
conditions are true. Paths in which conditions are inconsistent or unsatisfiable are in-
feasible and cannot be used for testing purposes. For this reason we consider a second
version of the model in figure 2, which we call the explicit-state model, differing from
the basic one, called implicit-state model, in that it unrolls server programs and dynamic
pages with different behaviors into actually different entities, which are given a progres-
sive identification number. In this way the page identity is not associated to a physical
entity (page or server program), but is rather differentiated according to the behavior.

With reference to figure 2, additional constraints apply, if we restrict either to the
implicit-state or to the explicit-state model. The target of a redirect link is multiple in
the implicit-state model, where different behaviors are performed according to different
interaction states, while exactly one target is allowed in the explicit-state model, in which
the exclusive-or constraint is also valid (while it is not in the implicit-state model). The
association class ConditionalEdge is present only in the implicit-state model, since the
explicit-state model is constructed so as to make all input-dependent behaviors explicit
and eliminate the related conditions.

In order to define a set of testing techniques working on Web applications, it is con-
venient to re-interpret the model described above as a graph, whose nodes correspond to
the objects in the model and whose edges correspond to the associations between objects.
Labelled edges are used for the links having a LoadPagelntoFrame, Form, Parameter or
ConditionalEdge relation specifier. In the last three cases, labels are put respectively

100 RICCA AND TONELLA

inside double square brackets, square brackets and normal brackets. Since the model
adopted for Web sites is aimed at explicitly representing navigation, the paths in the as-
sociated graph can be regarded as interaction sessions in which the user navigates inside
the site, provides input data through forms and receives the results back through dynamic
pages.

Figure 3 shows an example of Web application for which both implicit-state and
explicit-state models are given. The application consists of an initial static page H (note
that the name is underlined to indicate that it is a UML object and not a class), from
which the user can navigate to a server program S through a link associated with a pa-
rameter, state, which is assigned the constant value 1. S builds a dynamic HTML
page, the content of which depends on the value of variable state which is received
by S. In particular, with state = 1, S builds a page containing one form which
collects the values of variables x and y and transmits a value of state equals to 2
as a hidden variable. This is represented in the implicit-state model (left of figure 3)
as a submit link guarded by the condition (state = 1). Such a link is generated
inside page D only when S receives a value of state equals to 1. Then, the server
program S is invoked for the second time, now with state = 2. The behavior in
this situation is different from the previous one, and the output page contains two new

H
link | [state=1]
S,
H build
link ' [state=1] !
—S— submit | [[x=1, y=2; state=2]]
build . S,
it (State=2)
Q [[a;\state=3]] build
submit D-
i (state=2) submit submit
(state=1) [[b, c; state=3]] [[a=1; state;;ﬁ \‘[[bzo’ o=5: state=3]]
[[x, y; state=2]]
S S
build build
Ds D

Figure 3. Example of Web application model with implicit (left) and explicit (right) state.

TESTING PROCESSES OF WEB APPLICATIONS 101

forms, respectively devoted to collecting the values of a and of b, ¢, while it does
not contain the previous form. This is the reason for the two submit links guarded by
the condition (state = 2). Finally, the server program S is executed again, either
by the first active form (gathering a as input) or from the second one (gathering b
and c). The result of this execution is still different and the dynamic page D that is
built now does not contain any form (state is equal to 3, and therefore, all conditions
are false). Its content varies also in the two cases where either a or b, ¢ are filled in by
the user.

The explicit-state model of this example of Web application is provided on the
right of figure 3. The server program S and the dynamic page D have been split into 4
pages, associated to the 4 different behaviors that may occur during an interaction, cor-
responding respectively to state = 1, state = 2, state = 3 and a gathered,
and state = 3 and b, c gathered. No condition has to be attached to the edges of
this model, since all condition-dependent behaviors have been separated explicitly. The
values of input and hidden variables and of link parameters are sufficient to identify a
particular navigation path, which is feasible by construction, since specific values (or
more generally equivalence classes of values) are assigned to variables and parameters.
All paths in the explicit-state model are feasible, while many paths in the implicit-state
model are infeasible (e.g., every path going from H to S and then following any of
the submit links with state = 3). The problem of determining the feasible paths is
thus transformed into the problem of selecting a set of input values representative of all
feasible paths. The underlying undecidability still remains, but it can be attacked more
effectively, as discussed in section 5.

4. Web application testing

In [Conallen 2000] the three most common architectural styles for the design of Web
applications are classified as follows:

Thin Web Client. Only the standard facilities of the client-side browser are exploited
(including forms) and all business logic is executed on the server.

Thick Web Client. A portion of the business logic is delegated to the client, where
applets, Java script, etc. can be used, but the communication protocol between client
and server remains HTTP.

Web Delivery. Executable programs running on the client establish with the server a
communication based on an ad hoc protocol different from HTTP.

Actually, a continuum exists between the extreme points of the above classifica-
tion. At one end, the Web Delivery style becomes a traditional client-server application,
defining its own communication protocol, and the Web is just the underlying infrastruc-
ture. At the other end, applications adhere completely to the HTTP protocol, the server
provides HTML pages without executable parts and all information exchange is me-
diated by the standard facilities provided by HTML (e.g., forms, links with parame-
ters).

102 RICCA AND TONELLA

The position that a Web application occupies in this continuum makes relevant
differences in the way testing can be conducted. As noted above, the main distinctive
feature of Web applications (those closer to the Thin Web Client) is the usage of the
HTTP protocol for message exchange. This is also the main feature that makes testing
these applications different from testing traditional programs. The HTTP protocol can
be exploited to automate test execution, and the organization of the interaction according
to the standard facilities of HTML simplifies test case generation. While departing from
this style and introducing more elements that are typical of client-server applications,
the benefits of HTTP are lost and the testing techniques become those employed for
traditional client-server software.

In the next section we will describe an approach to integration testing of Web ap-
plications that exploits the HTTP protocol to increase the level of automation. Before
considering our approach, integration testing is positioned with respect to the various
aspects involved in Web application testing and the different activities conducted during
the testing processes.

As with traditional software, testing can be performed to verify either the func-
tional or the nonfunctional requirements. Among the non functional requirements that
are typical of Web applications, performance is maybe the most important one. The per-
formance of a Web application can be assessed in terms of the response time (the time
necessary to obtain the required page on the browser) and of the number of clients that
can be simultaneously served (load testing). Assessment of the minimal computational
resources required on the server and on the client side is also an important non functional
issue.

The test of the functional requirements can be conducted by considering the Web
application as a black-box. In this case it is exercised by partitioning legal inputs into
equivalence classes and one or more test cases for each class are defined. Output pages
obtained by navigating the application and providing such inputs are compared with the
result expected from that interaction according to the system specifications. Each de-
viation from the expected behavior will be called an error in the following. Boundary
values are inputs that deserve special attention and therefore specific test cases have to
be defined for them. Alternatively, the Web application is considered as a white-box and
testing exploits knowledge about the internal functions of the application. In particular,
server and client side code, HTML pages and messages exchanged via HTTP are as-
sumed to be known and can drive the definition of the test cases. A widely used example
of this kind of test is called link validation. It aims at verifying that every link in every
page generated by the application is a valid link, i.e., no error is reported when it is tra-
versed. In the next section other white-box testing techniques are described, based on
the notion of coverage. As with traditional software, it is possible to define the internal
features of the application that must be covered by at least one test case before delivering
the application. Novel coverage criteria will be defined, tailored on the characteristics
of Web applications and based on the UML model that was introduced for them in the
previous section.

TESTING PROCESSES OF WEB APPLICATIONS 103

Different levels of testing can be conducted on a Web application, similarly to a
normal software system:

Unit Test. Singular components are tested and stubs/drivers replace missing parts. For
example, a server script is invoked by a driver which simulates the browser and re-
ceives the HTML page as the resulting output. Another example is a Java script pro-
gram which validates fields in a client side page and sends a request to a fictitious
server simulated by a stub.

Integration Test. Pages are composed and integrated with server programs. The tester
can now navigate from page to page and requests can be passed from the browser
to the Web server via HTTP. This testing phase is strongly based on the protocol
exploited, and, when this is HTTP, it can be supported by ad hoc techniques (see next
section).

System Test. The system is validated as a whole in an environment as similar as possi-
ble to the real, target environment.

Acceptance Test. The customer installs and runs the application in its own environ-
ment.

Regression Test. During evolution, the preservation of previous functionalities is
checked by rerunning the test cases defined for them. Exploitation of the HTTP pro-
tocol can positively affect also this testing activity.

Among the various testing levels, those for which the difference with respect to
traditional software is more relevant are Integration Test and Regression Test, in that
these levels heavily depend on the communication protocol used for client-server data
exchange. Web applications have their own protocol (HTTP) and the testing methods
used can take advantage of it. For the other levels, the methods usually adopted for
traditional software systems can still be used in the context of Web applications.

During Integration/Regression Test of a traditional application the interaction with
the user is simulated by generating the graphical events that trigger the computation from
the application interface. One of the main methods used to obtain this result is based on
capture/replay tools, which record the interactions that a user has with the graphical
interface and repeat them during regression test (figure 4, top). Although this can still
be done with Web applications, and is recommended for applications closer to the Web
Delivery than to the Thin Web Client, availability of the communication protocol HTTP,
which separates user interactions with the browser from server side computations, offers
the opportunity to define ad hoc techniques. HTTP messages can replace the graphical
events generated by a capture/replay tool during test case execution (figure 4, bottom).

5. Anapproach to integration testing of Web applications

Differently from traditional software, where white-box testing is typically applied only
at the unit level, for Web applications it is possible to exploit the knowledge on the
organization of the system into server programs, dynamic pages, forms, links, etc. to
define integration testing criteria. The starting point for the proposed approach is the

104 RICCA AND TONELLA

capture graphical
events

Web Delivery

WEB SERVER

BROWSER

i
)

Thick Web Cliemt

Thin Web

-

capture HTTP
messages

Figure 4. Capture/replay of graphical events versus HT'TP messages.

UML model of the Web application. The determination of this model is not a trivial
task. First of all, it should be noted that recovering the implicit-state model is a much
harder task than recovering the explicit-state one. In fact, in the implicit-state model the
behavior of each server program and the content of dynamic pages depend on condi-
tions, associated with the outgoing edges, that have to be specified by the user (it is not
possible recovering them) and must be complete and consistent. For large sites the task
of their specification is not affordable in practice. Moreover, when the UML model is
exploited for coverage assessment and test case generation, it is not easy (in general it is
undecidable) determining whether a selected path is feasible (i.e., there exists an input
such that all edge conditions in the path evaluate to true). On the contrary, recovering
the explicit-state model is more practical and all the paths in this model are feasible by
construction.

The operation performed on a Web application to extract its explicit-state model is
called state unrolling. It consists of replicating each server program and dynamic page
that is accessed in a new state, i.e., with inputs belonging to an equivalence class or
with hidden state variables or parameters associated to a state never encountered before.
This operation cannot be fully automated. The intervention of the user consists of the
specification of a sample input for every different behavior of the application. Then,
remaining steps of model extraction can be automated. In fact, when a server program
is executed and a dynamic page is retrieved, it is possible to automatically check if the
related state is new or it was encountered previously, thus deciding whether to unroll it
or not.

The model obtained through the state unrolling operation is a conservative explicit-
state model, which may include more expansions than strictly required. In fact, it may
happen that a given server program P; behaves differently in the two states S, and S5,
while the server program P, has exactly the same behavior in the two states. According
to the unrolling procedure described above P, is split into two because it is accessed
in two distinct states. A second operation, called state merging, is applied to unify the
server programs and dynamic pages that in different states behave the same. In general,

TESTING PROCESSES OF WEB APPLICATIONS 105

assessing the behavioral equivalence of two software modules is undecidable, but in
our case some heuristics can be applied for the simplest cases. For example, when the
resulting dynamic pages are exactly the same, it is possible to unify them, as well as
the unrolled server programs that generated them, since in the two different states they
give exactly the same result. More complex cases of state merging are associated to the
generation of dynamic pages with a common structure but different contents and to the
generation of dynamic pages in which the structure has some regularity that suggests a
common behavior. User intervention in these cases is unavoidable.

The recovered model of the Web application represents its internal structure, which
can be accessed to measure the coverage that a given fest suite (collection of test cases)
reaches, with respect to a given fest criterion (stating the features to be tested). A test
case for a Web application is a sequence of pages to be visited plus the input values to
be provided to pages containing forms. Therefore it can be represented as a sequence of
URLs specifying the pages to ask and, if needed, the values to assign to the input vari-
ables. Execution consists of requesting the Web server for the URLSs in the sequence and
storing the output pages. Differently from traditional software, branch selection can be
forced by choosing the associated hyperlink, without having to track conditions back to
input values. Some white box testing criteria, derived from those available for traditional
software [Beizer 1990], are:

e Page testing: every page in the Web application is visited at least once in some test
case.

e Hyperlink testing: every hyperlink from every page is traversed at least once.

e Definition-use testing: all navigation paths from every definition of a variable to every
use of it, forming a data dependence, is exercised.

e All-uses testing: at least one navigation path from every definition of a variable to
every use of it, forming a data dependence, is exercised.

e All-paths testing: every path in the Web application is traversed in some test case at
least once.

Flow analyses can be employed to determine the data dependences required by
some testing criteria. Nodes of kind Form generate a definition of each variable in the
input set. Such definitions are propagated along the edges of the Web site graph. If a
definition of a variable reaches a node where the same variable is used (use attribute of a
dynamic page) along a definition-clear path, there is a data dependence between defining
node and user node.

The definition-use and all-paths criteria are often impractical, since there are typ-
ically infinite paths in a site, if loops are present. They can be satisfied if weaker con-
straints are imposed on the paths to be considered. Examples are loop k-limiting and
path independence. In the first case, loops are traversed at least k times, while in the
second case only independent paths are considered. A path is independent from a given
set of paths if its vector representation is linearly independent from that of any other path
in the set.

106 RICCA AND TONELLA

When designing and executing test cases for a Web application, not all pages are
equally of interest. Static pages not containing forms can be disregarded, since they do
not collect user input, process it or display results. They contain fixed information that
needs not be examined during dynamic validation. The site can thus be reduced, while
retaining only the relevant entities. Given the graph representation of a Web application,
a reduced graph can be computed for the purposes of white box testing: each static page
without forms is removed from the graph and all its predecessors (if any) are linked
to all its successors. In the resulting graph, a fictitious entry node is added, connected
with all nodes with no predecessor, and a fictitious exit node is directly reachable from
all output nodes, i.e., dynamic nodes with non empty use attribute. In fact, the end of
a computation is reached, in a Web application, when some result is displayed to the
user, but no intrinsic notion of termination for a navigation session exists. Therefore,
dynamic pages whose content depends on the user input are good candidates for ending
meaningful computations.

5.1. Test case generation

Satisfaction of any of the white box testing criteria involves selecting a set of paths in
the Web application graph and providing input values. Since in the explicit-state model
path selection is independent from input values, it can be automated. Moreover, since in
the explicit-state model edges are associated with the actual inputs used to recover the
model, given a path of interest it is easy to determine the inputs that allow traversing
it. They can be just collected from the path edges. Note that the same operation in the
implicit-state model is much harder, in that it involves determining inputs which satisfy
the path condition, i.e., the conjunction of the conditions in the path edges.

We propose a test case generation technique based on the computation of the path
expression [Beizer 1990] of the reduced Web site graph. A path expression is an al-
gebraic representation of the paths in a graph. Variables in a path expression are edge
labels. They can be combined through operators 4 and *, associated respectively with
selection and loop. Brackets can be used to group subexpressions. The path expres-
sions for the implicit-state and the explicit-state models of the example in figure 3
are:

link (build (submit; + submit, + submit;))*
link build; submit; build, (submit, build; + submit; build,),

where edges have been indexed with a numeric identifier when necessary to distinguish
them.

Computation of the path expression for a site can be performed by means of the
Node-Reduction algorithm described in [Beizer 1990]. Since the path expression di-
rectly represents all paths in the graph, it can be employed to generate sequences of
nodes (test cases) which satisfy any of the coverage criteria. Determining the minimum
number of paths, from a path expression, satisfying a given criterion is in general a hard
task. However, heuristics can be defined to compute an approximation of the minimum.

TESTING PROCESSES OF WEB APPLICATIONS 107

The heuristic technique adopted for this work is based on the following scheme:

while criterion not satisfied
for each alternative from inner to outer nesting
choose one never considered before, if any
or randomly choose one
if computed path increases coverage
add it to the resulting paths

where the alternative for a loop is whether to reiterate or not.

Definition-use and all-uses testing can be achieved by considering, for each data
dependence, the definition as entry node and the use as exit of the subgraph to be tested.
Criteria such as definition-use and all-paths testing, requiring the coverage of all paths,
can be met only if restricted to independent or k-limited paths.

Once paths for the test cases are generated from the path expression, the related
input values can be obtained from the attributes of the edges in the explicit-state model
used for test case generation. Then, their execution can be automated and, after down-
loading, the output pages can be inspected to assess whether the test case was passed or
not.

Regression testing highly benefits from the automation described above, since each
test case can be reexecuted unattended on a new version of the Web application, and
its output pages can be automatically compared with those obtained from a run of the
previous version.

6. The tool TestWeb

The UML model of the Web application to be analyzed is generated by the other tool we
are developing, ReWeb [Ricca and Tonella 2000; Ricca and Tonella 2001] (see figure 5).
Among the others, ReWeb contains a module called Spider, which downloads all pages
of a target web site starting from a given URL. Each page found within the site host is
downloaded and marked with the date of downloading. The HTML documents outside

Test Expected
criterion pages

T -... TestWeb
Figure 5. TestWeb’s modules and their dependencies on ReWeb and the user input.

ReWeb

Test
executor

Test
generator

108 RICCA AND TONELLA

the web site host are not considered. The pages of a site are obtained by sending the
associated requests to the Web server. For dynamic pages, the user has to specify the
set of inputs that the Spider will provide to the server programs generating them. To
obtain an explicit-state model representing all behaviors of the server programs, more
inputs can be provided by the user, associated with the same dynamic page. The re-
sulting UML model is an explicit-state model in which server programs and dynamic
pages have been unrolled according to all different conditions specified by the user in
terms of different input values. The operation of state merging is currently performed
manually, but some strategies for its partial automation can be implemented. They have
been sketched in the previous section. If no input is specified for a given dynamic page,
the Spider will not expand the model beyond the related server program. This feature of
ReWeb is useful to analyze the functioning of portions of a Web application. Partitioning
the tested functionalities by cutting the model at given nodes is important, especially
for large Web applications. The user has also to provide the set of used variables, use,
for each dynamic page whose content depends on some input value. Such a property is
necessary for data-flow testing.

As depicted in figure 5, TestWeb contains a test case generation engine (Test gen-
erator), able to determine the path expression from the model of a Web application, and
to generate test cases from it, provided that a test criterion is specified. Generated test
cases are sequences of URLs which, once executed, grant the coverage of the selected
criterion. Input values in each URL sequence are those specified for the Spider. Such
inputs can be marked with the unrolling index of the server program and dynamic page
they allow to download. In this way, during testing it is possible to obtain exactly the
dynamic page with the structure required to follow a given path. In fact, a page with the
needed structure was obtained by the Spider by providing the same input values. Such a
possibility solves one of the major problems in testing traditional software: selecting the
inputs to traverse a path of interest. Testing Web applications is simpler because branch
selection can be forced, being associated to the user navigation, which is an external
input. Moreover, the existence of the hyperlink to be followed is granted if the dynamic
page is obtained under the same conditions in which it was downloaded. This can be
achieved by exploiting the same inputs that are used by the Spider.

TestWeb’s Test executor can now provide the URL request sequence of each test
case to the Web server, attaching proper inputs to each form. The output pages produced
by the server, marked in the UML model with a non empty use attribute, are stored for
further examination. After execution, the test engineer intervenes to assess the pass/fail
result of each test case. For such an evaluation, she/he opens the output pages on a
browser and checks whether the output is correct for each given input. During regres-
sion check such user intervention is no longer required, since the oracle (expected output
values) is the one produced (and manually checked) in a previous testing iteration. Of
course, a manual intervention is still required in presence of discrepancies. A second,
numeric output of test case execution is the level of coverage reached by the current test
suite.

TESTING PROCESSES OF WEB APPLICATIONS 109

7. A case study

Several Web applications are periodically downloaded, analyzed and tested by ReWeb
and TestWeb. In [Ricca and Tonella 2000] examples of static analyses of real Web ap-
plications can be found, while in [Ricca and Tonella 2001] testing techniques are suc-
cessfully applied to two complex and well known Web applications: Wordnet and
Amazon. In the following the analysis and testing of a Web application that provides
Italian railway timetables will be presented and discussed. The richness of its dynamic
structure makes it an interesting case study for testing. Approximate server side infor-
mation, necessary for analysis and testing, was deduced through interaction sessions and
examination of the output page content.

FS-online (http://orario.fs-on-line.com/orario.it.html or
http://62.110.170.234/orario.it.html) is a portion of a very complex
Italian web site (http://www.trenitalia.it/) providing national rail travel
information, devoted to timetables and tickets. The FS-online database can be ac-
cessed directly from the initial Web page orario.it.html (see figure 6) of the
site by means of a form collecting user inputs such as: departure station,
arrival station, date of travel and departure time. After submit-
ting the form, filled-in with correct inputs, the dynamic page fsbin/fsquery ap-
pears (see figure 7), showing a list of possible solutions to reach the chosen station (two
solutions in the example). The user can select one of them, to see detailed informa-
tion, buy the ticket on-line (only if the related option is active) or return to the initial
page. In the case of selection of a solution, the page fsbin/fsquery is reloaded,
but now it contains details on the chosen solution, such as number of train changes,

S otscpe:Orto Utice et

Fie Edl Vaw Go Communicator Help
€« + 3 & 2 o + & O Ll
Back Haload Home Saarch Neticape Pirt Secuity Shop 1

|k Bockmarks & Localion [hetp /782 110 110 2M/orario st head | 07 What's Retsbod

T £ Manean 2 Wathial g Connactions o Bizsoumal o SmartUpdste o Milpiace
Curarta UfMiectale Tresilabs

WALERD 1IN AL 78 CERBLAID 3082

Ricarca trano -
[

Qi s itae [ran o Treriia ¢ O wpastwe tagett
orErasgrad o fioona) ST o §
us roka

o Nk 2 (H we |

Figure 6. The initial Web page orario.it.html

110 RICCA AND TONELLA

[BIIE] Motscap: Tromtas - 5 Pove: Mesians 3 Vodocross ¢

File Edt View Go Communicater Halp
< & 3 &4 =2 b + & 0O i
Bach Fomwara aload Home Saarch Melicape Pred Secutly Shop 3

i g Bokmana B GoTo [hetp /762 110, 370 234/Fabin/Fagaery Patazin-povatatazout-valleccani sbdazag-I25datan-Tedataa- | (LTS What's Retabed

| Manbars 2 Webhan 2 Connectioni g Bizsoumil (s-unq;m;- lml;uh

—p
3

[+ IR A s 0@ B 2|

Figure 7. The dynamic page £sbin/fsquery.

type of trains and services. This page has also a form, containing only hidden
variables, whose values are transmitted to the dynamic page fsbin/prezzil.
The page fsbin/prezzil collects other inputs (e.g., number of passengers, seat
class, etc.) and transmits them, by means of another form, to the server program
fsbin/prezzi?2. Finally, fsbin/prezzi2 computes the price of the chosen so-
lution and displays it.

When it is possible buying the ticket on-line, a clickable red cart icon (see fig-
ure 7, last column) is shown in the column “acquista” of the page fsbin/fsquery.
This link with parameters transmits the parameter values to the server program
fsbin/fsquery that, this time, redirects them to the server program fsbin/
prezzil. The resulting page collects some inputs (e.g., number of passengers, seat
class, etc.) and transmits them to the server program fsbin/preris2 (not to
fsbin/prezzi?2 as before) that computes the price of the chosen solution. Other
links and forms, starting from fsbin/preris2 (not considered here), for booking
and buying tickets are also available.

An interesting feature of this site is the behavior of the server programs
fsbin/fsqueryand fsbin/prezzil: the content of the dynamic pages they build
depends on the state of the user interaction. In the case of £sbin/fsquery a model
with n 4 3 states is assumed, where state O is associated with the page showing the list
of solutions (in figure 7, £sbin/fsquery is in state 0), states from 1 to n are asso-
ciated with the pages showing details of the chosen solutions. In the state REDIRECT,
fsbin/fsquery redirects the collected inputs to the page fsbin/prezzil, while
in the state ERR the page displays error messages. FS-online exploits a general mech-

TESTING PROCESSES OF WEB APPLICATIONS 111

Table 1
Behaviors of the server program fsbin/fsquery with respect to variables det and acqg. OK is a label
indicating a valid sequence of input values, while Not OK is used for incorrect inputs.

State Behavior Conditions to reach the state
0 displays table of solutions input = OK
1,...,n displays details of a chosen (i-th, where 1 < i < n) (det = 1) A input = OK
solution
REDIRECT redirects to fsbin/prezzil (det =1) A acq =1 A input = OK
ERR displays an error message input = NotOK
Table 2
Features of the site FS-online and testing data.
Static pages: 1 Nodes: 11
Dynamic pages: 4 Edges: 22
Server programs: 4 ;
Forms: 4 Path expression loops: . 30
Path expression alternatives: 33
Merged states: 1
Unrolled states: 2 Independent paths: 13
Unrolled dynamic pages: 8 Total test cases: 4
Unrolled server programs: 8
Unrolled forms: 8

anism to implement the concepts of state and state transitions. Several hidden variables
(det, acq, tges) are used to set the state and pass it to the server, via form submission
or link with parameters, when a state transition has to occur. The variable det identifies
the number of the solution chosen by the user, acqg becomes equal to 1 only if the red
cart icon is selected and tges is 1 if, for the given solution, buying the ticket is activated
(it is O otherwise). Table 1 clarifies the relation between the variables det and acqg and
the behavior of the page fsbin/fsquery.

The variable tges is used by the page fsbin/prezzil. If tges is equal to 1
the page fsbin/prezzil collects the inputs and transmits them to the server program
fsbin/preris2,whileif tgesisequal to 0 fsbin/prezzil transmits the inputs
to the dynamic page f£sbin/prezzi2.

The portion of FS-online devoted to handling timetables and computing ticket
prices, as recovered by ReWeb with the inputs indicated in figure 6, is shown in fig-
ure 8. In this explicit-state model, the server programs and the dynamic pages they build
are collapsed into single nodes for space reasons. Only two server programs are repre-
sented explicitly in the model (nodes with grey background). They are associated to a
redirection (dotted edge from fsbin/fsqueryto fsbin/prezzil),instead of the
construction of a dynamic page.

As indicated in table 2, after unrolling this portion of FS-online includes 1 static
page, the initial page orario.it.html, 8 forms and 8 dynamic pages. ReWeb per-
formed two state unrollings to explicitly represent the different contents displayed under

112 RICCA AND TONELLA

orario.it..html

[[input=NotOK]]

fsbin/fsquery-ERR . | linput=NotOK

[[input=OK]]

fsbin/Esquery-0

[input=0K, det=1] [input=0K, det=null]

fsbin/fsquery-1

]
1puL=OK, det=1] [input=0K, det=2]

[[;input=0K, tges=I, det=1, ...|] fsbin/fsquery-2

[input=0K, det=1, acq=1]

[input=0OK, det=2]|

[input=0OK, det=1,
N acq=1, tges=1]

[[sinput=OK, tges=0, det=1, ...

fsbin/prezzil -1 fsbin/prezzil-0

[[numberPassengers, classTrain, ...;
input=0K, tges=1, det=1, ...]]

fsbin/preris2

Figure 8. Portion of explicit-state model of the Web application FS-online.

[[numberPassengers, classTrain, ...;
input=0K, tges=0, det=1, ...|]

fsbin/prezzi2

different conditions by the server programs £sbin/fsqueryand fsbin/prezzil
(unrolled dynamic pages are indicated with the name followed by -id, where id is
an identifier). A manual operation of state merging was necessary to unify the dynamic
pages fsbin/prezzil-1land fsbin/prezzil-2 produced by the server program
fsbin/prezzil with different inputs. Since they have the same content, they have
been collapsed into £sbin/prezzil-1. An interesting feature of this site, appear-
ing after state unrolling, is that the dynamic pages produced by the server program
fsbin/fsquery (fsbin/fsquery-0 ... £sbin/fsquery-n) are organized
according to a well known navigational pattern: the guided tour. After choosing a so-
lution, the user can visualize the previous or next one by simply navigating along the
tour (note the use of the variable det in figure 8, recording the position in the page
sequence).

The first step of the testing activity for the site FS-online was the construction
of its path expression. The paths represented in it require 30 loop and 33 alternative
operators (see table 2). Four independent feasible (by construction) paths were computed
by TestWeb from the path expression, associated with 4 test cases (see figure 9 for an
example of test case). This set of 4 test cases provides 100% coverage of page and
hyperlink testing criteria. Execution of the test cases highlighted the robustness of the
site, which could handle appropriately several different interactions, including those for
the management of error conditions and incorrect input data.

An anomalous behavior, which may be regarded either as a defect or an improve-
ment area of the server program fsbin/fsquery used in the FS-online application,

TESTING PROCESSES OF WEB APPLICATIONS 113

GET fsbin/fsquery(stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsquery2 stazin=Povo,stazout=Vallecrosia,datag=22 datam=7,dataa=2001,time=12
GET fsbin/fsquery0 stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsqueryl stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsquery?2 stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsqueryl stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsquery(stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsquery2 stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsquery0 stazin=Povo,stazout=Vallecrosia,datag=22 datam=7,dataa=2001,time=12
GET fsbin/fsquery0 stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsquery? stazin=Povo,stazout=Vallecrosia,datag=22 datam=7,dataa=2001 time=12
GET fsbin/fsquery0 stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsqueryl stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsquery?2 stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsqueryl stazin=Povo,stazout=Vallecrosia,datag=22 datam=7,dataa=2001,time=12
GET fsbin/fsquery(stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsquery2 stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/fsquery0 stazin=Povo,stazout=Vallecrosia,datag=22,datam=7,dataa=2001,time=12
GET fsbin/prezzil stazin=Povo,stazout=Vallecrosia,data=15/7/2001,time=12,det=1,tges=1,acq=1, ...
POST fsbin/preris2 npostiordr=1, classe=2, ... ,stazin=Povo,det=1,tges=1,acq=1, ...

Figure 9. Test case produced by TestWeb.

was evidenced. The solutions produced by the server program fsbin/fsquery are
sensitive to the departure time, in situations where they should not be. The program
searches the FS-online database for all possible travel solutions within 24 hours from the
departure time inserted by the user. If, for example, the user inserts the following data:
departure station: Povo, arrival station: Vallecrosia, date of travel: 22/7/2001,
and departure time: 10 : 00, the Web application gives two solutions (see figure 7). The
first departure time is 20 : 24 while the second one is 9 : 21 of the next day (the asterisk,
near the departure time, indicates that the solution is for the next day). If the user in-
serts the same departure station, the same arrival station and the same date, but changes
the departure time, for example inserting 7 : 00, the travel solutions are still two but the
second one is anticipated at 6:46 to respect the constraint that the solution is within
24 hours from the departure time. It is interesting to note that the arrival time is the
same in the two cases, i.e. 19:49 (the second and third trains are the same; only the
first train changes), with the drawback that in the second case the travel time is approxi-
mately 3 hours greater than in the first. These hours are wasted in the station of the first
connection, Trento.

8. Conclusion

Web applications require a new perspective on development and testing practices. While
many activities are similar to traditional software engineering, others, as for example the
testing phase, need adaptation to the specific features of these applications.

In this paper, the testing processes of Web applications are considered in the larger
context of Web application development, for which an incremental/iterative, model cen-
tered process has been described. The proposed Web application model is exploited
when structural testing is performed.

The main advantages offered by the Web testing techniques described in this paper
are the possibility to automatically generate test cases (inputs included) from the path

114 RICCA AND TONELLA

expression, and to automatically execute them (by sending HTTP messages to the Web
server). Manual validation of the outputs is still required.

The testing processes described in this paper are supported by the ReWeb and
TestWeb tools. The usage of these tools has been presented with reference to a real-world
case study, the FS-online Web application. During the testing activity of FS-online, ex-
ecution of the test cases highlighted an undesired, anomalous behavior, that could have
gone unnoticed in a less formalized testing environment.

Manual intervention is necessary for the extraction of the UML model of a Web
application. In fact, the inputs necessary to access and unroll dynamic pages have to be
specified in a file. Their completeness with respect to the possible behaviors of the Web
application is a prerequisite for the construction of an accurate model. Our future work
will be devoted to investigating techniques for the (partial) automation of this critical
activity in the process presented in this paper.

References

Antoniol, G., G. Canfora, G. Casazza, and A. D. Lucia (2000), “Web Site Reengineering using RMM,” In
Proceedings of the International Workshop on Web Site Evolution, Ziirich, Switzerland, pp. 9-16.

Beizer, B. (1990), Software Testing Techniques, 2nd ed., International Thomson Computer Press.

Bichler, M. and S. Nusser (1996), “Developing Structured WWW-Sites with W3DT,” In Proceedings of
WebNet, San Francisco, CA.

Booch, G., J. Rumbaugh, and I. Jacobson (1998), The Unified Modeling Language — User Guide, Addison-
Wesley, Reading, MA.

Chang, W.K. and S.K. Hon (2000), “A Systematic Framework for Ensuring Link Validity under Web Brows-
ing Environments,” In Proceedings of the 13th International Software/Internet Quality Week, San Fran-
cisco, CA.

Conallen, J. (2000), Building Web Applications with UML, Addison-Wesley, Reading, MA.

Eichmann, D. (1999), “Evolving an Engineered Web,” In Proceedings of the International Workshop on
Web Site Evolution, Atlanta, GA.

Isakowitz, T., A. Kamis, and M. Koufar (1997), “Extending RMM: Russian Dolls and Hypertext,” In Pro-
ceedings of HICSS-30.

Liu, C.-H., D.C. Kung, P. Hsia, and C.-T. Hsu (2000), “Structural Testing of Web Applications,” In Pro-
ceedings of ISSRE 2000, International Symposium on Software Reliability Engineering, San Jose, CA,
pp- 84-96.

Maclntosh, M.A. and M.W. Strigel (2000), “‘The Living Creature’ — Testing Web Applications,” In Pro-
ceedings of QW 2000, 3th International Software/Internet Quality Week, San Francisco, CA.

Miller, E. (1998), “The Web Site Quality Challenge. Companion Paper: ‘WebSite Testing’,” In Proceedings
of QW’98, 11th Annual International Software Quality Week, San Francisco, CA.

Pressman, R.S. (2000), “What a Tangled Web We Weave,” IEEE Software 17, 1, 18-21.

Ricca, F. and P. Tonella (2000), “Web Site Analysis: Structure and Evolution,” In Proceedings of the Inter-
national Conference on Software Maintenance, San Jose, CA, pp. 76-86.

Ricca, F. and P. Tonella (2001), “Analysis and Testing of Web Applications,” In Proceedings of ICSE 2001,
International Conference on Software Engineering, Toronto, ON, Canada, May 12-19, pp. 25-34.

Warren, P., C. Boldyreff, and M. Munro (1999), “The Evolution of Websites,” In Proceedings of the Inter-
national Workshop on Program Comprehension, Pittsburgh, PA, pp. 178-185.

