Unit Testing Concurrent
Sof’rwure

i

\;‘
|
'

Introduction

IR Why concurrent software testing?

— The roadmap of future CPUs lead to multicore chips. The burden of
ufilizing multiple CPUs falls on the software developer.

— Everyone will, at some point, write software for a multiple CPU system in
their near future.

—— “Unit Testing Concurrent Software” by William Pugh & Nathaniel Ayewah, the
developers behind MultithreadedTC.

— By viewing & studying an existing framework, we can be more concrete
and less abstract.

— Learn some tools already available to us.
— Good starting point.

Concurrency Testing is Ditterent

~ New types of defects exist such as deadlocks and race
conditions.

~ Concerns exist over how the system interleaves threads, not
so much about input/output.

' Even single-threaded applications have a large number of
paths of execution, the move to multi-threaded applications
causes this to explode rapidly.

Concurrency Testing is Ditterent

' The demands of testing a multithreaded system call for new
tools and frameworks.

-~ JUnit is great, but we lack a way fo control multiple threads

such that we are then able interleave threads in a particular
fashion for the SUT.

' Enter; MultithreadedT(

MultithreadedT(

—— You will most likely use commonly available tools and frameworks while
developing software.

— JUnit, Cobertura, JavaN(CSS, etc.

——— MultithreadedTC is the Java framework which allows the developer to write @
specific sequence of inferleaving threads to test the system for concurrency
conditions.

——— Mofivated by the philosophy that multithreaded applications should be buils
using small abstractions: semaphores, bounded buffers, latches, etc.

— This means it's possible to exercise/test all the possible combinations
since the abstractions are small. The application logic and concurrency
logic are separated.

MultithreadedTC Features

—— Open source: http://code.google.com/p/muliithreadedtc/

— Aready developers are adding in features.

Well documented.

Easy to read and understand.

Pure Java, no scripting language required (unlike ConAn).

Eliminates “scaffolding code” needed fo run multithreaded tests.

— No “.start()" or “.join()", among others.

http://code.google.com/p/multithreadedtc/
http://code.google.com/p/multithreadedtc/

MultithreadedTC Documentation

Overview Package []Use Tree Deprecated Index Help

PREV CLASS MNEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | EIELD | CONSTR | METHOD DETAIL: FIELD | CONSTE | METHOD

edu.umd.cs.mtc

Class MultithreadedTestCase

ava.lang.0bject
L—'unit.framewcrk.hssert
L—adu_umd_cs_mtc_HultithrﬂadﬂdTﬂstCESﬂ

Direct Known Subclasses:
MultithreadedTest

public abstract class MultithreadedTestCase
extends Assert

This is the base class for each test in the MultithreadedTC framework. To create a multithreaded test case, simply extend this c
with "thread", that has no parameters and a void return type is a thread method. Each thread method will be run in a seperate
initialize() and finish{) methods you can override.

A single run of a multithreaded test case consists of:
1. Running the initialize() method
2. Running each thread method in a seperate thread
3. Running the finish() method when all threads are done.

The method TestFramework.runOnce (MultithreadedTestCase) can be used to run a MultithreadedTestCase once. The m
TestFramework.runManyTimes (MultithreadedTestCase, int) can be used to run a multithread test case multiple times (

Both threads start at the same time. thread1() runs until
thread?() sets the Atomiclnteger to 2, then thread1() sets
the ai to 3, and both threads join, then the final finish()

method asserts that the ai is now 3.

MultithreadedTC Clock

—— MultithreadedTC is able fo provide a nice platform for writing fest cases for
concurrent software, making the job of the software developer easier when

fest fime comes.
—— This is due to a “metronome” the framework runs on a separate thread.
— The clock advances in “ticks” (from 0 to n).
— This allows the developer to correcily interleave threads.

— The metronome only advances to next tick when all threads are in a
blocked state, and af least 1 thread is for a future tick.

MultithreadedTC Example

EXAMPLE
Thread 1

Let us validate some properties of a bounded blocking buffer
with a capacity of 1 element. We want to ensure that:

(a) The assertion take = 42 occurs after the call to put 17
(b) The call to put 17 blocks thread 1

Thread 2
tick 0

put 42

Solution 1: Use Thread.sleep() to delay the first statement in
thread 2. This introduces unnecessary timing
dependence (test does not work well in a debugger
or with an ill-timed garbage collector).

Solution 2: Use a latch to coordinate activities in both threads.
This will not work because the call to put 17
blocks thread 1 before the latch can be released.

Solution 3: Use MultithreadedTC!

put 1?l
(blocks) |

class BoundedBufferTest extends MultithreadedTestCase {
BoundedBuffer buf; QK\H&_
void initialize() { buf = new BoundedBuffer(l); } all tests extend base class
public void threadl() {
buf.put(42);
buf.put(17);
assertTick(l) ;"

} JUnit Test
public void thread2() { f

waitForTick(l);« walts unti al public void testBoundedBuffer()
assertTrue(buf.take() 42); threads are throws Throwable {

blocked
assertTrue(buf.take() 17); TestFramework.runonce(

verity unblocking does
not occur until tick 1

run simultaneously in different threads

}
void finish() { assertTrue(buf.iseEmpty()); }

new BoundedBufferTest()
)

Framework Evaluation

' Authors evaluate the performance of MultithreadedTC by
reproducing some test code used in the TCK for JSR 166.

File lev. A Author Last log entry
Y Parent Directory

[y
ko
[l

£ AbstractExecutorServiceTest java jsrl66 improve exception handling

et
fa

jsrle6 improve exception handling

jsri66 replace absolute waits with _DELAY _MS; 1000 => 1000L; short delay af
jsrl66 replace absolute waits with _DELAY _MS; 1000 => 1000L; short delay af
jsrl66 use autoboxing judiciously for readability

jsrl66 use autoboxing judiciously for readability

jsrle6 untabify

jsrle6 Runnable => CheckedRunnable

jsrl66 improve exception handling

jsrl66 More thorough testing of values

jsrl66 Runnable => CheckedRunnable

jsrl66 improve exception handling

=| AbstractQueueTest.java

[y
[
F =Y

[y
S

=] AbstractQueuedSvnchronizerTest.java

£| ArrayBlockingQueueTest.java

=] ArrayDegueTest java

[
b
=21

[y
=
[]

[
[
L

= AtomicBooleanTest java

-
==
L]

2] AtomicIntegerArrayTest java
= AtomicIntegerFieldUpdaterTest java

[y
[y
=

|-
et
[=]

B AtomicIntegerTest.java

-
==
F=N

= AtomicLongArravTest.java
g Atomicl.ongFieldUpdaterTest.java

= AtomicLongTest.java

[y
=
=

-
et
Rt |

jsrl66 More thorough testing of values

Results of Evaluation

~ 0f those tests in the TCK, the authors looked af 258 tests
which attempted to use a specific inferleaving of threads in
33 classes, and implemented those tests using

MultithreadedT(.

Table 1: Overall comparison of TCK tests and MTC
(MultithreadedTC) implementation

Measure TCK | MTC
Lines of Code 8003 | 7070
Bytecode Size 1017K | 980K
*Local variables per method 1.12 0.12
*Av. anon. inner classes/method 0.38 | 0.01
* Metrics measured by the software quality tool Swatdj [4]

Mulh’rhreudedTC vs ConAn

Concurrency Analyzer (ConAn)

' Testing Tool.

" Developed by Strooper, Duke, Wildman, Goldson and Long at
the University of Queensland, Australia.

" Based on Roast.

' Aims for short test cases.

' Script-based.

' Uses internal clock for synchronization.

" Generates Java test driver from test script.

Test Driver Generation

TAVA
ConAn

Ja it Roast ConAn Test Driver

#ticktime 200
#monitor m WriterPreferenceReadWritelock

\ldots
#begin
#test C1 C13
#tick
#thread <til>
#excMonitor m.readLock().attempt(1000); #end
#valueCheck time() # 1 #end
#end
#end
#tick
#thread <til>
#excMonitor m.readLock() .release(); #end
#valueCheck time() # 2 #end
#end
#end
#end

Figure 4: The script for a ConAn test to validate a
Writer Preference Read Write Lock

Comparison

ConAn MultithreadedT(C

Ticks af regular intervals Advances when all threads are blocked

Organization by ticks Organization by threads

Deterministic Deterministic & Indeterministic

Custom Syntax / Scripting Language Pure Java

Comparison

' Line count comparison between MultithreadedTC and ConAn
for fests on the WriterPreferenceReadWriteLock Java Class.

Test Suite ConAn Driver
Basic Tests 2192
Tests with Interrupts 3535
Tests with Timeouts 1629
Total Line Count 7356

Other Tels”h” !

i | B
“‘
\ 11
i ‘l
1 0 B
g B
‘ “.\‘
I B}
3R
g B
R
‘l
18
‘)
1
\ 1]
1l
1

0l
I-!- '||'|iw

roboutils

N\

' junit.extensions.ActiveTestSuite
Build a suite of tests that run concurrently
Run each test in a separate thread

Suite does not finish until all test threads are complete

Can be used with RepeatedTest to uncover threading
problems

public static Test suite() {
TestSuite suite = new ActiveTestSuite();
suite.addTest(new TestGame(“testCreateFighter”));
suite.addTest(new TestGame(“testGamelnitialState”));
suite.addTest(new TestGame(“testSameFighters”));
return suite;

' Inspired by JUnit

' Tests are run in parallel

— Parallel parameter must be set

" Thread-count

— Specifies size of thread pool

@Test(threadPoolSize = 3, invocationCount = 10, timeQut = 200)
public void shouldHandleRequestSwiftly() {
//make request

}

GroboUtils

Extension of JUnit.

Thread is specified by extending TestRunnable class and
implementing runTest() method.

- (lasses are provided to run multiple instances of the thread
simultaneously.

'~ Monitors execution of threads to look for inconsistent states.

Conlest

eveloped by [BM.

D
' Records and replays inferleavings that lead to faults.
U

ses sleep() and yield() to test different inferleavings each
fime a fest is run.

Conclusion

'~ MultithreadedT(

— Short test cases.
— JUnit compatible.

— Involves very little overhead.

References & More Information

“Viewpoint: Face the inevitable, embrace parallelism”, ACM: http://

portal.acm.org/citation.cfm?
id=1562164.1562179&coll=GUIDE&d|=GUIDE&CFID=66231572&CFTOKEN=601

99555

MultithreadedTC: http://www.cs.umd.edu/projects/PL/multithreadedtc/
index.htm|

JSR 166 Interest Site (maintained by Doug Lea): http://qee.cs.oswego.edu/
dl/concurrency-interest/

WriterPreferenceReadWriteLock.java, by Doug Lea : hitp://
gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl /util /concurrent/
WriterPreferenceReadWriteLock.java

http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://www.cs.umd.edu/projects/PL/multithreadedtc/index.html
http://www.cs.umd.edu/projects/PL/multithreadedtc/index.html
http://www.cs.umd.edu/projects/PL/multithreadedtc/index.html
http://www.cs.umd.edu/projects/PL/multithreadedtc/index.html
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java

