
Unit Testing Concurrent 
Software

The MultithreadedTC Framework

Ricardo Miron and Jack Weaver for Comp 587



Introduction
Why concurrent software testing?

The roadmap of future CPUs lead to multicore chips.  The burden of 
utilizing multiple CPUs falls on the software developer.
Everyone will, at some point, write software for a multiple CPU system in 
their near future.

“Unit Testing Concurrent Software” by William Pugh & Nathaniel Ayewah, the 
developers behind MultithreadedTC.

By viewing & studying an existing framework, we can be more concrete 
and less abstract.
Learn some tools already available to us.
Good starting point.



Concurrency Testing is Different

New types of defects exist such as deadlocks and race 
conditions.

Concerns exist over how the system interleaves threads, not 
so much about input/output.

Even single-threaded applications have a large number of 
paths of execution, the move to multi-threaded applications 
causes this to explode rapidly.



Concurrency Testing is Different

The demands of testing a multithreaded system call for new 
tools and frameworks.

JUnit is great, but we lack a way to control multiple threads 
such that we are then able interleave threads in a particular 
fashion for the SUT.

Enter: MultithreadedTC



MultithreadedTC
You will most likely use commonly available tools and frameworks while 
developing software.

JUnit, Cobertura, JavaNCSS, etc.

MultithreadedTC is the Java framework which allows the developer to write a 
specific sequence of interleaving threads to test the system for concurrency 
conditions.

Motivated by the philosophy that multithreaded applications should be built 
using small abstractions: semaphores, bounded buffers, latches, etc.

This means it’s possible to exercise/test all the possible combinations 
since the abstractions are small.  The application logic and concurrency 
logic are separated.



MultithreadedTC Features

Open source:  http://code.google.com/p/multithreadedtc/

Already developers are adding in features.

Well documented.

Easy to read and understand.

Pure Java, no scripting language required (unlike ConAn).

Eliminates “scaffolding code” needed to run multithreaded tests.

No “.start()” or “.join()”, among others.

http://code.google.com/p/multithreadedtc/
http://code.google.com/p/multithreadedtc/


MultithreadedTC Documentation



MultithreadedTC Code Example

Stays in loop until condition
is met by 2nd thread

Both threads start at the same time.  thread1() runs until 
thread2() sets the AtomicInteger to 2, then thread1() sets 
the ai to 3, and both threads join, then the final finish() 

method asserts that the ai is now 3.



MultithreadedTC Clock

MultithreadedTC is able to provide a nice platform for writing test cases for 
concurrent software, making the job of the software developer easier when 
test time comes.

This is due to a “metronome” the framework runs on a separate thread.

The clock advances in “ticks” (from 0 to n).

This allows the developer to correctly interleave threads.

The metronome only advances to next tick when all threads are in a 
blocked state, and at least 1 thread is for a future tick.



MultithreadedTC Example



Framework Evaluation
Authors evaluate the performance of MultithreadedTC by 
reproducing some test code used in the TCK for JSR 166.



Results of Evaluation
Of those tests in the TCK, the authors looked at 258 tests 
which attempted to use a specific interleaving of threads in 
33 classes, and implemented those tests using 
MultithreadedTC.



MultithreadedTC vs ConAn



Concurrency Analyzer (ConAn)
Testing Tool.
Developed by Strooper, Duke, Wildman, Goldson and Long at 
the University of Queensland, Australia.
Based on Roast.
Aims for short test cases.
Script-based.
Uses internal clock for synchronization.
Generates Java test driver from test script.



Test Driver Generation

ConAn
Test Script Roast ConAn Test Driver



Example



Comparison

ConAn MultithreadedTC
Ticks at regular intervals Advances when all threads are blocked

Organization by ticks Organization by threads

Deterministic Deterministic & Indeterministic

Custom Syntax / Scripting Language Pure Java



Comparison
Line count comparison between MultithreadedTC and ConAn 
for tests on the WriterPreferenceReadWriteLock Java Class.



Other Testing Tools
JUnit, TestNG, GroboUtils, ConTest



JUnit
junit.extensions.ActiveTestSuite

Build a suite of tests that run concurrently
Run each test in a separate thread
Suite does not finish until all test threads are complete
Can be used with RepeatedTest to uncover threading 
problems

public static Test suite() {
TestSuite suite = new ActiveTestSuite();
suite.addTest(new TestGame(“testCreateFighter”));
suite.addTest(new TestGame(“testGameInitialState”));
suite.addTest(new TestGame(“testSameFighters”));
return suite;

}



TestNG
Inspired by JUnit

Tests are run in parallel

Parallel parameter must be set

Thread-count

Specifies size of thread pool

@Test(threadPoolSize = 3, invocationCount = 10, timeOut = 200)
public void shouldHandleRequestSwiftly() {

//make request
}



GroboUtils

Extension of JUnit.

Thread is specified by extending TestRunnable class and 
implementing runTest() method.

Classes are provided to run multiple instances of the thread 
simultaneously.

Monitors execution of threads to look for inconsistent states.



ConTest

Developed by IBM.

Records and replays interleavings that lead to faults.

Uses sleep() and yield() to test different interleavings each 
time a test is run.



Conclusion

MultithreadedTC

Short test cases.

JUnit compatible.

Involves very little overhead.



References & More Information
“Viewpoint:  Face the inevitable, embrace parallelism”, ACM:  http://
portal.acm.org/citation.cfm?
id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=601
99555

MultithreadedTC:  http://www.cs.umd.edu/projects/PL/multithreadedtc/
index.html

JSR 166 Interest Site (maintained by Doug Lea): http://gee.cs.oswego.edu/
dl/concurrency-interest/

WriterPreferenceReadWriteLock.java, by Doug Lea : http://
gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
WriterPreferenceReadWriteLock.java

http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://portal.acm.org/citation.cfm?id=1562164.1562179&coll=GUIDE&dl=GUIDE&CFID=66231572&CFTOKEN=60199555
http://www.cs.umd.edu/projects/PL/multithreadedtc/index.html
http://www.cs.umd.edu/projects/PL/multithreadedtc/index.html
http://www.cs.umd.edu/projects/PL/multithreadedtc/index.html
http://www.cs.umd.edu/projects/PL/multithreadedtc/index.html
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/WriterPreferenceReadWriteLock.java

