BNOINGErIND Internel Sollware............................

Going Faster: Testing The
Web Application

This article
documents test-first
design and the
creation of testable
code for Web
anplications. The
authors explain how

testing has been
critical to building
Evant’s application
at speed while
maintaining a high
degree of quality.

60 IEEE SOFTWARE

Edward Hieatt and Robert Mee, Evan:

esting is a fundamental aspect of software engineering, but it is a
practice that too often falls by the wayside in today’s fast-paced
Web application development culture. Often, valuable software
engineering principles are discarded, simply because they are per-

ceived as being too time-consuming and lacking a significant payoff, and

testing is a common casualty. Testing is often last in developers’ minds when

pressured to deliver something, anything, before the competition jumps on

it, the market changes, or the money runs
out. Despite developers’ hard work, the re-
sulting code is often precisely the opposite of
what is desired: unstable and fragile, pro-
foundly slowing development. Furthermore,
adapting to new requirements is difficult be-
cause existing functionality must be manu-
ally retested whenever a change is made. We
know that testing is the answer, but is there
a way to adhere to doing it while still devel-
oping at a fast pace?

We have found that a radical approach cen-
tered on testing proves highly effective in
achieving rapid development. We have spent
the last two years using the Extreme Program-
ming methodology to develop e-commerce
software at Evant, a Web-based ASP company.
Focusing on testing and testability results in a
code base that can be built on quickly and that
is malleable to the extent that it can easily be
changed to accommodate new customer re-

March/April 2002

quirements and the latest Internet technologies.
We describe how testing helped and how we
established it as the development centerpiece.

Testing first

First, let us briefly describe what we mean by
“test-first” programming. To test-first means
to write a unit test for a new piece of function-
ality before the new code is written. For exam-
ple, if one were writing a “shoot-’em-up” com-
puter game, one might write a test asserting that
the player initially has three lives before the
code is implemented to make that the case.

Using unit testing to drive development
rather than relying solely on a quality assur-
ance team profoundly changes several aspects
of software engineering. Designs often differ
from what they might have otherwise been,
technology choices are influenced, and the way
in which the application code is integrated with
third-party frameworks is significantly altered.

0740-7459/02/$17.00 © 2002 IEEE

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 3, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

Though it might seem a tautology, prac-
ticing test-first programming leads to a per-
vasive quality of testability throughout the
code base. By having tests in place, the over-
all code design is positively affected. More
tests, and more features, can easily be added
to designs and beneficial characteristics arise
as a natural consequence of its testability.

One such beneficial characteristic is re-
usable code. Code that is developed for a sin-
gle purpose usually services a single client
(meaning client code); a test provides a second
client for the interface. Thus we force reuse by
testing. This secondary interface exercise, and
its resultant refactoring, tends to flush out de-
sign flaws that might exist in single-use code.
For instance, a class B written to support class
A might make inappropriate assumptions.
Writing unit tests specifically for B, independ-
ent of its relationship with A, removes these as-
sumptions, which leaves classes A and B more
loosely coupled and therefore more reusable.

Testable code tends to have a cleaner inter-
face, and classes tend to be defined at a more
appropriate granularity than they might other-
wise be. Writing tests simply makes it more ap-
parent when a single class’s scope is too ambi-
tious or too reliant on the workings of another.

Testing the serviet

Unit testing has beneficial effects on re-
moving dependence on a particular technol-
ogy. Often software teams are directed to
minimize their reliance on a single tool, tech-
nology, or vendor in an effort to maintain
long-term flexibility. This is easier said than
done. Take the ubiquitous Java servlet as an
example. The instructions are simple: over-
ride the “service () ” method and have it do
what you want. Several outcomes are possible
as the complexity of request processing grows
or the types of different requests increase. The
“service()” method might become long or
break up into several methods in the class,
there might be many utility methods added to
the servlet subclass, or a whole hierarchy of
different subclasses might arise in an attempt
to specialize and still reuse code. The problem
is that servlets are extremely awkward to test,
primarily because they are used as a compo-
nent in a specific environment—the servlet
container. Creating instances of servlets and
testing individual methods is quite difficult.

The test-first approach leads to a different
implementation. When it comes to servlets, it

is quite apparent that the easiest way to test
the code that handles requests is to remove it
from the servlet entirely, and put it into its
own class. In fact, not only is that the easiest
thing to do with respect to the tests, but the
resulting design itself is then more flexible
and quite independent of the servlet technol-
ogy. Our code in “service()” is three lines
long. It has just one responsibility: create an-
other object that will do the work and then
hand control to it. In our case, we call this
object a dispatcher. Its job is to decide what
kind of request is being submitted and create
yet another object (an instance of a com-
mand pattern) to handle the request. The dis-
patcher and each command object have their
own unit tests, in which creating the needed
fixture is trivial. Now we not only have a
testable design, we have one with a more ap-
propriate division of labor and one that is
more technology-independent.

Aggressive refactoring: Swapping
technologies

With the support of extensive unit tests it
is possible to radically change code without
breaking existing functionality. This gives the
developer the ability to make major changes,
even in integral frameworks, very quickly.
For example, it allowed us to refactor our
persistence code just weeks before we went
live with our first client.

We used Enterprise JavaBeans, specifically
Entity beans, to manage our database persist-
ence. We wanted to remove the entire EJB
layer because of poor performance and diffi-
culties in testing the internals of the Beans,
among other reasons. Without tests, we would
not have attempted to remove the Beans, but
given that our unit test suite included extensive
coverage for testing persistence, and that we
had experience in performing this kind of ma-
jor change, none of us was too concerned. In
fact, we would be getting a performance im-
provement, more testable code, and the re-
moval of an expensive technology.

We executed the refactoring in less than a
week, and performance did increase markedly.
We saved money by removing the EJB tech-
nology and ended up with more testable code
because we had removed a part of our system
that was essentially a black box.

Bugs
Testing has radically changed the way we

March/April 2002

Though It might

Seem a
tautology,
practicing
test-first

programming

leadsto a
pervasive
quality of
testability

throughout the

IEEE SOFTWARE

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 3, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

61

_ deal with controlling bugs. We think of bugs

which case the
programmers

62

The existing

would add
more tests.

IEEE SOFTWARE

differently from the traditional view—we
use our bug count to help pinpoint areas
that need more testing. That is, we consider
bugs as feedback about how we are doing
with our testing.

When a bug is found, we write a test that
“catches” the bug—a test in the area where the
bug was found that asserts what should be the
case and fails. We then change the code until
the test runs successfully, thus fixing the bug. In
this way, we fill in holes in our suite of tests.

We do not stop there, though. We look for
the case where several bugs in a related area en-
tered our bug tracking system during a short
time period. This information tells us that
something more seriously wrong exists with
our tests—perhaps the testing framework in
that area needs some work. For example, per-
haps three bugs are found one day all in the
area of logging out of the application. Rather
than trying to “pinpoint fix” each bug—that
is, assign each bug to a different developer,
thinking of each as an independent problem—
we assign the group of bugs to a single pair of
programmers. This pair looks at existing tests
for that area, which clearly did not do their job
well. The existing tests might not be extensive
enough, in which case the programmers would
add more tests. Or they might refactor the test-
ing framework in that area to allow better,
more accurate support for the kinds of tests
that we can then proceed to write.

The result is a suite of tests that constantly
grows and changes to cover as much of the
application as possible. The tests are run
whenever code is changed, catching prob-
lems before the changes are even deemed
worthy of being added to the main code base.
Armed with such a weapon, as little time as
possible is spent maintaining existing func-
tionality. In short, development occurs faster.

Tests as documentation

Our methodology does not encourage
writing documentation for code or even
writing comments in the code. Instead, we
rely on tests to document the system. This
might seem strange, but because tests are
written first, they completely define what
the code should do. (In fact, the definition
of the code being in working order is that
the tests all run.) We write our tests with
readability in mind. The best way to learn
what the code is supposed to do is to read

March/April 2002

the tests. New developers, or developers
who are inexperienced in a particular area,
can get up to speed far quicker this way
than by trying to wade through requirement
and design documents. It is more effective to
learn by reading a short, simple test than to
try and decipher code that might contain
problems or is very complex.

This method of learning through reading
tests is especially important in our company as
the development team grows. As new devel-
opers come on, they are paired with existing
developers to gain knowledge, but a large part
of their learning comes from reading tests.
New team members come up to speed quickly
because of well-factored, readable tests.

Acceptance tests and their extensions

In addition to writing unit tests, our
process has a mechanism called acceptance
tests that allow product managers to ex-
press tests at the scenario level.

We began by writing a testing tool that ex-
pressed operations in the system and the ex-
pected results as XML. Product managers,
with the assistance of programmers and qual-
ity assurance team members, wrote extensive
acceptance tests that, along with our suite of
unit tests, are run at every integration.

The acceptance tests provided a clear
value, but it was soon apparent that the
supporting frameworks for the XML had
several other benefits. As we neared deploy-
ment for our first customer, the need arose
to integrate with other e-commerce systems
and with the client’s legacy mainframes. We
employed an industry-standard EAI (Enter-
prise Application Integration) tool config-
ured to generate XML as an adaptor to
transform data from these external systems
to our own. The XML test framework re-
quired little modification to act as the inter-
face to this integration tool. We even used
the framework assertion capabilities to ver-
ify incoming transactions.

As our need for acceptance tests grew,
writing them more quickly and making them
easily maintainable became important. XML,
though workable, is awkward for a human to
write, especially for nontechnical staff. To
solve this, we implemented a domain-specific
language, called Evant Script Programming
(ESP), which is more compact and readable
than XML. Once ESP was available, we rec-
ognized uses beyond acceptance tests and

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 3, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

data loading, including an easy way to con-
figure system parameters, and that we could
use a suite of ESP scripts to create a tailored
demo environment.

Testing challenges and solutions

In the Web environment, the client and
the server are very different beasts. The
user’s machine runs a Web browser, which
understands HTML and JavaScript (we will
not discuss the extra complications of ap-
plets, plug-ins, or other client-side technolo-
gies here). The only ability this browser has
is to send information through a map of
strings over a stateless protocol to a Web
server, which deals with the submission by
passing it off to an engine running applica-
tion code (for example a servlet container
running Java code or a Perl program). We
would typically like to test the client and the
application server part of this set up, but it
would be difficult to come up with a testing
framework that could do both at once—to
test JavaScript and DHTML on the client
and Java on the application server. However,
splitting tests into two distinct parts is not a
good idea because we need to test how the
two sides interact.

This is the classic Web application testing
problem. We recommend the following remedy.

First, test those parts of the server-side
code that are not directly concerned with
being part of a Web application, without in-
volving the Web peculiarities. For example,
if one were testing the manipulation of a
tree object, one would test manipulating the
object directly, ignoring the fact that the vi-
sual representation of the tree is collapsed
and expanded by the user through the UL
Test the business logic with such low-granu-
larity unit tests. That is, of course, the goal
no matter what the UL but it becomes par-
ticularly important to be strict about it
when working with a Web application.

Second, test those parts of the client-side
code that have no server interaction. This is
typically code that contains little or no busi-
ness logic. Examples of such code, typically
written in JavaScript, might include func-
tions to pop up error messages, perform
simple field validations, and so on. The im-
mediate problem we faced in writing tests
for this sort of code was that no testing
framework existed for JavaScript inside the
browser. In fact, we had already heard from

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 3, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

For More Information

Books

Extreme Programming Explained, Kent Beck, especially Chapter 18
("The introduction to Extreme Programming”); a good place to start.

Extreme Programming Installed, Ron Jeffries et al., Chapters 13, 14,
29, and 34; contains a lot of information addressing common problems

and questions about unit festing.

Web sites

Testing frameworks:
www.xprogramming.com/software.htm
www.junit.org

Extreme Programming sites:
Www.Xxprogramming.com
www.extremeprogramming.org

other developers that testing JavaScript was
too hard, and that JavaScript itself should
therefore be avoided entirely. Undeterred,
we wrote a testing framework for JavaScript
called JsUnit, now a member of the XUnit
family of unit testing frameworks (www.
jsunit.net). JavaScript is notoriously diffi-
cult to write and debug, but using JsUnit
has greatly helped our rapid development of
client-side code.

Third, write functional tests of a low grain
in the server-side language (for example, Java
or C++) that simulate the request/response
Web environment. We wrote a framework for
such tests that extends our usual unit-testing
framework to allow the test author to think of
himself or herself as being in the Web browser
position, putting keys and values into a Map
object (which corresponds to <form> in an
HTML document). The framework simulates
a submission of the Map to the server by in-
voking the server code, passing in the Map as
a parameter. This invocation is coded in such
a way as to follow as closely as possible the
path a request would take were it submitted
through the true UL (We take advantage here
of the refactoring of our servlet discussed
above: We cannot “invoke” the servlet from a
test, but we can easily talk to the objects that
the servlet spins off.) The server’s response can
then be inspected and verified by the test (see
the next section for more on this). Because the
test code explicitly invokes the server-side
code, the test can inspect the state of the code,
rather than just the HTML output resulting
from the submission. It is for this reason es-
pecially that this method of testing is more
useful than a framework such as HTTPUnit,
which views the situation purely from the
client’s viewpoint.

March/April 2002

IEEE SOFTWARE

63

the server is
another classic

because of the
nature of Web

64

How to test
output from

problem

IEEE SOFTWARE

Using this framework, you can write walk-
through tests that simulate the user moving
through the Ul For example, we have meth-
ods available in the test framework with
names such as “clickSaveButton().” A test
case might call that method and then perform
assertions about the domain object that
should have been persisted as a result of the
call. Thus, we have the ability to perform an
action that the user might execute and then to
test specifics about the domain. Walkthrough
tests are particularly useful when writing tests
to reproduce bugs that manual testing has ex-
posed. In fact, there has not yet been a case
when we could not write a walkthrough test
that catches a bug found by a member of the
quality assurance team.

Testing server output

How to test output from the server is an-
other classic problem because of the nature of
Web applications. How do you test HTML?
Certainly we don’t want tests that assert that
the output is some long string of HTML. The
test would be almost unreadable. Imagine
tracking down a mistake in such a test, or
changing it when new functionality is re-
quired. Testing the Web page look is not usu-
ally the goal; testing the data in the output is.
Any slight change to the output—for example,
a cosmetic change such as making a word ap-
pear in red—should not break an output test.
We came to understand these issues as we pro-
gressed through several technologies used to
generate our HTML output. In fact, this pro-
gression and the choice on which we finally
settled were influenced in large part by what
was most easily testable.

At the outset we worked with JavaServer
Pages (JSPs). We found that although we got
up and running quickly using them, testing
them was hard. They are another Web tech-
nology that runs in a container environment
that is difficult to reproduce in a test. In addi-
tion, it was challenging for our Ul designers
to work with JSPs because of the amount of
Java code interspersed among the HTML.
Soon we were spinning off testable objects to
which the JSPs delegated that did the HTML
generation. When we arrived at the point
where the JSPs were literally one line long, we
dispensed with them altogether and produced
our HTML purely using Java. With that
arrangement we could easily test the state of
objects that produced the HTML—for exam-

March/April 2002

ple, that the object knew to make a button
disabled. We could also test the process of
producing pieces of HTML—for example,
the production of an HTML <table> ele-
ment. However, we were still not testing the
output. The same question dogged us: How
do you test the data in the HTML without
getting confused with the cosmetics? Further-
more, our designers were even less interested
in delving into Java code to change text color
than they had been with JSPs.

A further change of technology solved
both these problems. We generated our Ul
by outputting XML—pure data—from our
domain objects. Then we transformed the
XML into HTML for the client using Ex-
tensible Stylesheet Language Transforma-
tion (XSLT) pages, written and maintained
by our developers and UI designers.

XML is easily testable. In our walkthrough
tests, we can ask for the current XML out-
put at any time and then make assertions
about its structure and contents using the
standard XPath syntax. The XML consists
strictly of data from the domain; there is no
knowledge even that it will be used in the UL
Our XSIT contains only information about
how the UI should look and how to use the
data in the XML.

Thus we achieved an extremely clean sep-
aration of testable business data from HTML
generation that helped us develop the UI
much faster than the other methods we tried.
We could test that part of the output that
contained data without getting it confused
with the HTML. Conversely, our Ul design-
ers were happier because their work was not
confused by Java among the HTML. Again
we found a way to separate the untestable
Web technology, in this case HTML, from
the data.

A question we are often asked is how we
started promoting testing and testability at the
beginning of our development. The first step
in making our Web application testable was to
establish a culture of testing among the devel-
opers. Following the methodology of writing
tests first, our first task as a team was to write
the first test. Most team members were new to
the concept of test-first programming, so it
was not obvious to them how to go about this.

It seems almost comical thinking back on
it, but it was appropriate at the time: We pro-

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 3, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

About the Authors

grammed in a group for the first couple of
days. Having the entire team of eight huddled
around a monitor, achieving consensus on
every line of code, let us iron out right from the
start what a typical test looked like, how we
write a little bit of test code and then some
code to make the test run, when to go back
and add another test case, and so on. We also
quickly settled other issues that often plague
development teams: we agreed on coding stan-
dards, established a way to perform integra-
tions, and settled on a standard workstation

Edward Hieatt is o lead developer at Evant, a software vendor in San Francisco that
observes a strict practice of XP. He became involved with Extreme Programming in 1999. His
research interests include the rapid development and testing of Web-enabled software. He is
also the author of JsUnit (www.jsunit.net), a unit-testing framework for JavaScript, which is
one of the XUnit testing frameworks. Contact him af edward@edwardh.com.

Robert Mee is a software programming and process consultant in a variety of indus-
tries, helping companies apply the practices of Extreme Programming. He regularly gives
lectures on XP for corporations, their investors, and others. During 2000 and 2001, he was
director of engineering at Evant, where he helped introduce XP. His research interests include
human and computer languages, and the application of domain-specific languages to the au-
tomated fesfing of software. He has a BA in oriental languages from the University of Cali-
fornia at Berkeley. Contact him at robmee@

hotmail.com.

configuration.

hus testing has been an integral part of
our development process since the first
day, and remains so now. Of course,
our testing frameworks and practices change
and grow daily, and we are by no means fin-
ished with their evolution. For example, we
feel that we have a long way to go in finding
more appropriate ways to expose testing to

our business users. We would also like to ex-
tend our walkthrough test framework to simu-
late even more closely what happens in real sit-
uations. Our company supports us when we
ask for time to develop such abilities because
they have seen the benefits of testing. They
agree that our focus on tests and testability has
helped us go faster than any project they have
worked on in the past. @

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

) Software-Engineer
A Focus on Practice
Publication: September/October 2002 * Submission: 1 Apr

-
[
<
i
o
L
I
Y

What do software engineering professionals need to know, ac-

cording to those who hire and manage them? They must be able to

produce secure and high-quality systems in a fimely, predictable,
and cost-effective manner.

This special issue will focus on the methods and techniques for
enhancing software education programs worldwide — academic,
re-education, alternative—to give graduates the knowledge and
skills they need for an industrial software career.

Potential topics include
balancing theory, technology, and practice
experience reports with professional education
software processes in the curriculum
teaching software engineering practices (project management,
-~ requirements, design, construction, ...)
quality and security practices
team building
software engineering in beginning courses
computer science education vs. SE education
undergraduate vs. graduate SE education
nontraditional education (distance education, asynchronous
learning, laboratory teaching, ...)
® innovative SE courses or curricula
o firaining for the workplace

ring Education:

2002

For more information about the focus, contact the guest
editors; for author guidelines and submission details, contact the
magazine assistant at software@computer.org or go to htp://
computer.org/software/author.htm.

Submissions are due af software@computer.org on or before
1 April 2002. I you would like advance editorial comment on a
proposed topic, send the guest editors an extended abstract by
1 February; they will return comments by 15 February.

Manuscripts must not exceed 5,400 words including figures and
tables, which count for 200 words each. Submissions in excess of these
limits may be rejected without refereeing. The articles we deem within
the theme's scope will be peer-reviewed and are subject to editing for
magazine style, clarity, organization, and space. We reserve the right fo
edif the title of all submissions. Be sure fo include the name of the
theme for which you are submitting an arficle.

Guest Editors:

Watts S. Humphrey, Software Engineering Institute
Carnegie Mellon University, watis@sei.cmu.edu

Thomas B. Hilburn, Dept. of Computing and Mathematics
Embry-Riddle Aeronautical University hilburn@db.erau.edu

March/April 2002 1EEE SOFTWARE 65

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 3, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

