
76 January 2004/Vol. 47, No. 1 COMMUNICATIONS OF THE ACM

MANAGING CONFLICT
IN SOFTWARE TESTING

BY CYNTHIA F. COHEN, STANLEY J. BIRKIN,
MONICA J. GARFIELD, AND HAROLD W. WEBB

CONFLICT BETWEEN SOFTWARE TESTERS AND DEVELOPERS IS

INEVITABLE, BUT MINDFUL MANAGERS MINIMIZE ITS EFFECT ON

DEVELOPMENT PROJECTS THROUGH COMMUNICATION, MUTUAL

RESPECT, EVEN SOCIAL INTERACTION.

Software development involves many people, each focusing on

some aspect of the overall process. Software testing is a crucial

aspect of ensuring the quality of the end product. Although many

tools and automated methods are available, the result ultimately

depends on the interpersonal interactions of the people producing

the software. However, they often don’t all share the same goals or

mindset or necessarily feel compatible. Each such factor might

thus contribute to conflict, an inevitable part of organizational life

managers are constantly trying to resolve [6].

I L LU S T R AT I O N B Y O R E S T E Z E VO L A

COMMUNICATIONS OF THE ACM January 2004/Vol. 47, No. 1 77

78 January 2004/Vol. 47, No. 1 COMMUNICATIONS OF THE ACM

Conflicts arise in organizations for a variety of rea-
sons, including scarce resources, interdependent
work, differentiated work, competitive reward sys-
tems, perceptions of inequity, and asymmetrical dis-
tribution of power [4]. While conflict does not always
produce negative results and can even enrich organi-
zational outcomes [3], it can certainly disrupt work
processes and contribute to poor performance. Soft-
ware development, like any other work activity,
involves many possible sources of conflict that can
undermine efficiency. The potential for conflict
among software developers and
users has been identified [2, 8]. Sim-
ilarly, conflict can occur within the
software development group itself,
particularly during the inherently
adversarial software testing process.

Because conflict often has the
potential to interfere with work per-
formance and product quality, it is
important for both scholars and
practitioners to identify its sources
in software testing, understand how
it affects work processes and out-
comes, and determine ways to man-
age it better. In order to understand
how best to accomplish these objectives, we con-
ducted in-depth field interviews in 2002 with 10 soft-
ware testing professionals from four different U.S.
companies, two large, one mid-size, one small [1].
These interviews led us to categorize three basic con-
flict layers—process, people, and organization—and a
set of actions available to managers for addressing
each of them (see the figure here).

Process (the scarce resource of time). The most fre-
quently mentioned source of conflict by the testers
and project managers we surveyed was the allocation
of time between development and testing. This is not
unique to software testing, as time is a persistent issue
in all types of project management scenarios [7]. As
organizations of all types strive to quickly get sophis-
ticated, defect-free products to market, time
inevitably becomes scarce and more valuable. Testing
is often postponed and planned testing time reduced
to stay on the delivery schedule.

The result is conflict, as testers and developers com-
pete for time to complete their tasks. The sequential
nature of development and testing often results in
testers being left with little time. One tester we inter-
viewed said, “They [project managers] let the develop-
ers code up to the 11th hour. Then they expected it to
be tested. It’s very frustrating knowing that once it goes
into production there is not enough time to test
because they [the developers] were being allowed to

develop up to the last minute. I mean literally the last
minute—the night before.” Another tester said, “I
think the developers look at that schedule and see their
little piece of time. If it bleeds over, so what? Since
they’re not at the tail end, they’re not the ones burning
the CDs and sending them out the door. They don’t
have the same sense of urgency as the people on the tail
end of the project. As development slips, the sense of
urgency increases, the stress goes up, and the tension
between the two groups starts flying.”

Process (user vs. technical requirements). Another
source of conflict we iden-
tified is the kind of focus
developers and testers
bring to their jobs. Testers
and managers agreed that
testers were more focused
on user requirements and
developers more on the
technical nuances of soft-
ware design. These
equally valid but dis-
tinctly different views of
the process can add value
but also create problems.
Developers flexing their

intellectual muscles often look
for novel ways to achieve results.
This can lead to application

goals incompatible with those of the testers. One
example mentioned by a tester we interviewed was
“Some of them [developers] embellish on the require-
ments. Like this one instance where a developer had
buttons in his application. There was nothing wrong
with the buttons; there was nothing wrong with the
way they worked; nothing wrong with the way they
looked. But he takes it upon himself, goes out and
finds some new buttons, implements them, and they
don’t end up working on the browser I’m using. Then
he changes them back to the way they were because
he realizes a lot of users are going to have my version
of the browser. Doing that, he forgets about some of
them. So there’s a couple that don’t work.”

People (different strokes). Not only do testers and
developers perceive the process of software develop-
ment differently, they often have their own unique
mental processes and personality attributes. A tester
told us, “Developers think and write the app the way
it should work. And they can’t understand why any-
body would use it other than the way it should work.
It’s an entirely different mindset as to what QA [qual-
ity assurance specialists] feels is an effective unit test
and what development feels is an effective unit test.”
A manager told us, “Our testers are geared toward

Organization

People

Software
Testing
Process

Layers of conflict.

COMMUNICATIONS OF THE ACM January 2004/Vol. 47, No. 1 79

testing; they have an understanding of the business,
not just from the software development standpoint
but from what occurs out there in real life and what
needs to happen from a functional perspective.”
Many testers described themselves as “compulsive”
and “very detailed” and the testing group as “cohe-
sive.” Developers were typically described by testers
and managers as “very creative,” “temperamental,”
and “individualistic.” While these characteristics often
mean individuals are well suited to their work, they
can also lead to incompatibility when they work
together.

People (personalization of code). Many developers
view their code as an
extension of themselves
and thus take it person-
ally when someone finds
fault with it. Conflict
ensues as errors are
detected and communi-
cated to developers.

Most testers cited
developer reluctance to
accept the existence of
errors, saying, “Develop-
ment wants you to show
them six different ways it
should or should not run
a certain way” and
“That’s not my code;
clearly the test was broken.” One said, “There’s the
usual resentment and the ego of it, that we’re beating
up their design or their code or whatever.” A more
extreme reaction may result in personal attacks and
the lodging of complaints against co-workers. One
tester said, “I got dinged by one of the developers who
thought, for whatever reason, I had something against
her. She filed complaints with the manager about me.
She said I wasn’t doing my job, that I was hindering
the whole development process. But the problem was
entirely on her end.”

Organization (power and politics). Though most
organizations recognize the need for high-quality
testers and their specialized skill set, testers still strug-
gle to win the respect they deserve. One manager told
us, “If you had a diagram with God at the top, the
engineers [developers] would put themselves above
that.” Many testers feel they struggle to maintain their
place relative to that of developers. Another tester
said, “We have to fight to keep ourselves equal; we are
continually doing things to make ourselves feel just as
worthy.” The lack of status and support makes the
tester’s job more difficult and time consuming, as the
struggle for recognition becomes part of the job itself.

Organization (managers matter). Similarly, the
manager’s role in setting the tone for the importance
of testing was also discussed by our interview subjects.
One tester said, “I think it starts from the top; they
have to support QA. Developers see that QA is not
getting the support and the leverage in the company,
so they won’t, in turn, respect what you’re doing.”
Another tester said, “We have a QA manager whose
style is kind of adversarial. The first QA manager we
got, she did a very good job of building a working
relationship [with] the developers. They brought in
this new QA manager, and she basically severed all
that relationship building.” Managers are often

brought into conflicts
between testers and
developers. This can be a
treacherous process, lead-
ing to results like the one
reported by a tester who
recalled a situation where
“the developers fired the
manager.”

The Conflict
Dynamic
Such candid comments
yielded insight into the
common sources of con-
flict experienced by soft-
ware testers. Conflict

also adversely affects work
processes, the quality of work,
and the quality of work life.

Consequently, managers need to address the conflict
dynamic. Several ways in which conflict might be
managed better are suggested in our interview results
(see the table here).

Process (time management). Time itself is a require-
ment for effective testing. Although a lack of time
might be an expectation for many testers, it still causes
considerable stress and conflict. One tester said,
“We’re told to hurry up and wait, wait, wait, wait.
And then you’re coming in here on Saturdays to test
because they [the developers] didn’t deliver until Fri-
day. You’re being squeezed to the very end.” The loss
of testing time was interpreted to mean testing was
not highly valued. Managers need to schedule enough
time for the testing process and refrain from canni-
balizing that time when developers miss their dead-
lines or when user requirements change. In planning
software projects, managers can take advantage of
lessons learned from past project management experi-
ence. One technique that might help with the identi-
fication and resolution of time conflicts is called

Scarce resource
of time

User vs. technical
requirements

Different strokes

Personalization
of code

Power and
politics

Managers matter

Time management
 Plan for schedule overruns
 Manage effect of schedule changes
 Learn from project experience
Common goals
 Align individual goals with process metrics
 Value team more than individual success

Team building
 Train in conflict resolution
 Sponsor group activities
 Support informal social contact
Understanding one another's point of view
 Design jobs to support mutual understanding
 Involve testers in requirements planning

Structure for success
 Co-locate teams
 Integrate development/testing functions
 Instill ownership
Involved leadership
 Create collaborate atmosphere
 Model effective conflict management

Sources of
Conflict

Managing
Conflict

Processes

People

Organization

Managing conflict at
the source.

critical chain scheduling, which seeks to avoid the
effects of Parkinson’s Law, whereby work expands to
fill however much time is available. Instead, it empha-
sizes the completion time of an entire project, rather
than the individual activities along the project’s criti-
cal path. When time overruns occur, time must be
taken from the project buffer, a common pool of
“delay time” used by all project activities. Continual
requests for scarce buffer time not only raise aware-
ness of time estimation problems but maintain the
integrity of testing time; time overruns are taken from
the buffer, not from testing time.

Process (setting common goals). Conflict often results
when testers and developers do not share common
work goals. Group and individ-
ual goals need to be clearly
defined, not only to release
software in a timely fashion but
to ensure the release of high-
quality code. Performance mea-
sures need to be reflected in
each aspect. As an example of
setting common goals, one
manager told us that testers and
developers were “driven by the
excitement of seeing the hottest
network in the world with their
code running on it; they really
want that. QA also wants to see
it happen. So their mission is
shared, which I think really
works.” He added that when
testers found problems the
developers would say, “I’ll fix it
right away” or “ I never thought of that. We need to
make sure the test covers that next time.” As this case
illustrates, the incidence of conflict is reduced when
finding defects becomes a collaborative process with
the common goal of improving the software.

Another way to align work performance for the
sake of meeting organizational goals is by selecting bet-
ter quantification measures of software testing
processes. Using such methodologies as the Software
Quality Metrics Methodology (IEEE Standard 1061-
1998) [5], managers tailor a set of measures to evalu-
ate development and testing activities aligned with
software system requirements. Properly selected mea-
sures should motivate managers and employees alike
to achieve system requirements rather than focus nar-
rowly on the products of their individual units.

People (team building). Some testers seem to learn
(by trial and error) how to approach developers when
experiencing conflict. It can be assumed that not all
testers are equally adept at this. Although none of the

testers or managers we interviewed indicated that con-
flict-resolution training was offered in their organiza-
tions, formal training would clearly benefit work skills
for both groups. Better conflict-handling skills not
only help resolve today’s problems more effectively,
they build better working relationships for the future.
Conflict-resolution skill building should include com-
munication skills, cooperative problem-solving tech-
niques, and informal mediation techniques.

Another way to manage differences is to foster rela-
tionships between testers and developers. Testers and
developers who communicate only when problems
occur lack a robust social fabric with which to smooth
the process. Several testers and managers we inter-

viewed indicated that social contact
paved the way to better working
relationships with developers. One
manager said his company spon-
sored group social activities outside
of work specifically to improve rela-
tionships. Participants went to
amusement parks and museums
and joined in other recreational
activities. Benefits accrue from indi-
viduals becoming more comfortable
with one another and being able to
use these back channels to manage
problems productively, including
informal gatherings after work and
in common areas during work
hours.

People (understanding one anoth-
er’s point of view). Conflict also
stems from the fact that developers

and testers do not view the software process the same
way. More important, they don’t always realize that
their perceptions don’t match. Structured work activ-
ities designed to acquaint developers and testers with
the nature of each other’s work could help prevent
some of these problems. Job rotation is one tool suc-
cessfully applied to improving employees’ under-
standing of the various jobs within an organization.
Although strict job rotation might not be appropriate
among software testing and development positions,
some aspect of job design could still be used to gain
similar benefits. Likewise, early and consistent
involvement of testing in the requirements planning
phase may provide opportunities for joint under-
standing at a point in the process when both groups
have the time to listen to one another and when there
is less existing conflict to inhibit communication.

Organization (structure for success). Our interviews
identified several structural concepts for addressing
conflict. The most popular among testers was physi-

80 January 2004/Vol. 47, No. 1 COMMUNICATIONS OF THE ACM

THE LACK OF

STATUS AND SUPPORT

MAKES THE TESTER’S JOB

MORE DIFFICULT AND

TIME CONSUMING,
AS THE STRUGGLE FOR

RECOGNITION

BECOMES PART OF

THE JOB ITSELF.

cal co-location. When testers and developers worked
in separate locations, communication, as well as per-
sonal relationships, was impaired, unlike when both
groups worked in close proximity. One tester sug-
gested the two groups should be made to work side by
side, adding, “I don’t care if you’re an organization
that has great email, network access, and everything
else. If you don’t have that personal interaction where
you can talk to somebody to resolve an issue, that 10-
minute issue turns into a full day.”

The second structure is fully integrated teams of
testers and developers, reducing the intellectual and
physical distance between the groups and facilitating
joint goal-setting. However, testers working in inte-
grated teams cited many of the same conflict sources as
testers in organizations where the functions were sepa-
rated. This paradoxical outcome highlights the fact
that conflict in software projects must be addressed at
multiple levels. The testers did feel, however, they had
closer relationships with and better access to develop-
ers than testers in nonintegrated structures.

Another structural form shown to improve conflict
management is the use of integrated teams vested with
comprehensive product ownership. In it, team mem-
bers follow their applications into the maintenance
and enhancement portions of the product life cycle.
As the manager of one such organization told us, the
team receives the fruit of its labors. This sense of own-
ership helps establish a common focus for all team
members because they know they are responsible for
how the application works for end users.

Organization (involved leadership). Finally,
acknowledging that developers and testers alike take
their cues from the behavior of their managers, man-
agers must signal that testing is an important compo-
nent of the software development process, not an
unrelated activity. Managers must carefully imple-
ment performance metrics and goals and provide
feedback to development and testing that is congruent
with mutually compatible project goals.

Managers also need to understand that conflict
between testers and developers is a normal part of the
work process. The most notable characteristic distin-
guishing effective from ineffective management is not
the presence or absence of conflict but how effec-
tively it is managed. Managers are role models for
conflict-handling styles. Proper performance of this
responsibility goes a long way toward solving prob-
lems; performing it poorly contributes to the escala-
tion of conflict.

Conclusion
All three layers of conflict—process, people, and
organization—are endemic to software development

projects. The adversarial nature of software testing
and the intellectual and personal differences among
testers and developers can be a recipe for conflict.
Although it is unreasonable to expect that conflict
can be avoided, the goal should be better ways to
manage it. As we have suggested, involved managers
provide top-level support and set the tone for prob-
lem solving. They use organizational structure, man-
agement practices, and team-building activities to
influence testing activities in ways that improve the
overall software development process.

References
1. Barki, H. and Hartwick, J. Interpersonal conflict and its management in

information system development. MIS Quarterly 25, 2 (June 2001),
195–228.

2. Birkin, S., Cohen, C., Garfield, M., and Webb, H. Causes and conse-
quences of conflict in software testing. Presented at the Global Business
and Technology Association 2002 International Conference (Rome,
Italy, June 25–29, 2002).

3. Capozzoli, T. Conflict resolution. Supervision 60, 11 (Nov. 1999),
14–16.

4. Jameson, J. Toward a comprehensive model for the assessment and man-
agement of intraorganizational conflict: Developing the framework. Int.
J. Conflict Mgmt. 10, 3 (July 1999), 268–204.

5. Modell, C., Ed. IEEE Standard 1061-1998, IEEE Standard for a Software
Quality Metrics Methodology. Software Engineering Standards Commit-
tee, New York, Dec. 1998; see ieeexplore.ieee.org/iel4/6061/16194/
00749159.

6. Tjosvold, D. The Conflict Positive Organization. Addison-Wesley Pub-
lishing Co., Reading, MA, 1992.

7. Umble, M. and Umble, E. Manage your projects for success: An appli-
cation of the theory of constraints. Prod. Invent. Mgmt. J. 41, 2 (2nd
quarter 2000), 27–32.

8. Yeh, Q. and Tsai, C. Two conflict potentials during IS development.
Inform. Mgmt. 39, 2 (fall 2001), 135–149.

Cynthia F. Cohen (ccohen@coba.usf.udu) is a professor in the
Department of Management and Organization at the University of
South Florida, Tampa.
Stanley J. Birkin (sbirkin@coba.usf.edu) is a professor in the
Department of Information Systems and Decision Sciences at the
University of South Florida, Tampa.
Monica J. Garfield (mgarfield@bentley.edu) is an assistant
professor in the Computer Information Systems Department at
Bentley College, Waltham, MA.
Harold W. Webb (hwebb@ut.edu) is an assistant professor in the
Information Technology Management Department at the University of
Tampa.

This work was supported in part by The National Institute for Systems Test and Pro-
ductivity at The University of South Florida in Tampa under the USA Space and
Naval Warfare Systems Command, Grant No. N00039-01-1-2248.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2004 ACM 0002-0782/04/0100 $5.00

c

COMMUNICATIONS OF THE ACM January 2004/Vol. 47, No. 1 81

