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SUMMARY

Intuition suggests that random testing should exhibit a considerable difference in the number of faults
detected by two different runs of equal duration. As a consequence, random testing would be rather
unpredictable. This article first evaluates the variance over time of the number of faults detected by
randomly testing object-oriented software that is equipped with contracts. It presents the results of an
empirical study based on 1215 h of randomly testing 27 Eiffel classes, each with 30 seeds of the random
number generator. The analysis of over 6 million failures triggered during the experiments shows that the
relative number of faults detected by random testing over time is predictable, but that different runs of the
random test case generator detect different faults. The experiment also suggests that the random testing
quickly finds faults: the first failure is likely to be triggered within 30 s. The second part of this article
evaluates the nature of the faults found by random testing. To this end, it first explains a fault classification
scheme, which is also used to compare the faults found through random testing with those found through
manual testing and with those found in field use of the software and recorded in user incident reports.
The results of the comparisons show that each technique is good at uncovering different kinds of faults.
None of the techniques subsumes any of the others; each brings distinct contributions. This supports a
more general conclusion on comparisons between testing strategies: the number of detected faults is too
coarse a criterion for such comparisons—the nature of faults must also be considered. Copyright q 2009
John Wiley & Sons, Ltd.
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1. INTRODUCTION

A substantial amount of research in software testing has been devoted to developing new or
improving the existing fault detection strategies. It is often hard to know how these strategies and
related tools perform in terms of their fault detection ability. The question has been addressed in
two different ways. One is to assess the effectiveness and efficiency of a strategy in absolute terms.
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4 I. CIUPA ET AL.

How many faults are detected? If a strategy is used till the end of generating tests [1], how much
does it cost to generate and execute the tests? A second way is to perform relative assessments by
comparing one strategy with others. Many researchers have followed the latter path, as witnessed
by the large (and here necessarily incompletely cited) body of work [2–11]. Some studies have
provided analytical answers such as subsumption relationships; others have focused on the number
of faults experimentally detected by the different strategies. In sum, there is almost no conclusive
evidence that one testing strategy would clearly outperform another one in terms of the number
of detected faults.

Arguably, the least that one would expect from a testing strategy is that it performs better than
random testing. Intuitively, random testing is the simplest form of generating tests and (seemingly)
does not require too much intellectual or computational effort. Indeed, the random generation of test
input data is attractive because it is widely applicable and cheap, both in terms of implementation
effort and execution time. Yet, in addition to the input data, test cases also contain an expected
output part. Because it depends on a specific input, the expected output cannot be generated at
random. However, it can be provided at different levels of abstraction [12]. One extreme possibility
is to specify the expected output as abstractly as ‘no exception is thrown.’ In an admittedly rough
manner, this solves the oracle problem by reducing testing to robustness testing: random test case
generation boils down to picking elements from the input domain and adding ‘no exception’ as
expected output.

Testing object-oriented programs is slightly more challenging. This is because the input domain
may consist of arbitrarily complex objects: picking random elements from the set of integers is
obviously simpler than generating arbitrary electronic health records. Most routines (methods)
defined for a health record are likely to be applicable only if the health record exhibits certain
characteristics—for instance, a comparison of two diagnoses at least requires the existence of the
two diagnoses. As a consequence, generating objects to use as input to a routine is a non-trivial
task.

This article analyzes one particular flavour of random testing for O-O software both in absolute
and relative terms. In a first step, it analyzes several characteristics of random testing itself, namely
its predictability in terms of both number and nature of detected faults, the average time it takes
to detect a first failure, and the distribution of detected faults. These questions are motivated by
the intuition that two distinct runs of a random test case generator—technically speaking, with
two different seeds for the random number generator—should yield different results. It turns out
that in the experiments, random testing is likely to detect the first failure within 30 s; that is it is
highly predictable in terms of the relative number of detected faults; but that two different runs
of a random testing tool are likely to reveal different faults. From an engineer’s point of view,
a high variance of random testing means low predictability of the process—which immediately
reduces its value. One might argue that random testing can be performed overnight and when spare
processor cycles are available; the sheer amount of continuous testing would then compensate
for any potential variance. However, arbitrary computation resources may not be available, and
insights into the efficiency of a testing strategy are useful from the management perspective: such
numbers make it comparable with other strategies.

The finding that different runs of the random testing tool find approximately the same number
yet different faults suggests that the number of faults is too coarse a criterion for the comparison
of testing strategies. Consequently, a second part of the article compares the nature of faults
revealed by random testing with the nature of faults revealed by manual testing and user incident
reports. In these experiments, random testing turns out to be neither better nor worse than the other
strategies. Each strategy finds different faults, which suggests that random testing should be used
as a complement to these strategies, rather than as a competing technology.

More concretely, in terms of the number of faults detected, it first examines how similar the
results of different test sessions of the same duration but with different seeds of the random number
generator are. It then addresses the issue of predictability of random testing. Second, it sheds light
on the nature of faults that random testing finds, in particular, when compared with manual testing
and with user incident reports.
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ON THE NUMBER AND NATURE OF FAULTS FOUND BY RANDOM TESTING 5

1.1. Experiments and results

The experiments presented here evaluate Eiffel programs. One distinctive feature of Eiffel programs
is that they contain embedded executable specifications in the form of contracts§ . Routine postcon-
ditions are one type of contracts. These naturally lend themselves to be used as oracles, with a level
of abstraction somewhere in-between the concrete output and the abstract absence of exceptions
[12]. Randomly generating test cases for Eiffel programs hence consists of (1) generating input
objects for a routine to be tested and (2) adding the postcondition as the expected output.

The experiments use the AutoTest tool [14] to investigate the performance of random testing.
AutoTest performs fully automated testing of contracted Eiffel programs: it calls the routines of
the classes under test with randomly generated inputs (objects), and, if the preconditions of these
routines are satisfied, it checks if contracts are fulfilled while running the tests. Any contract
violation that occurs or any other thrown exception signals a fault.

AutoTest’s strategy for creating inputs is not purely random: it is randomly combined with
limit testing, as explained in Section 2. Previous experiments [15] have shown that this strategy is
much more effective at uncovering faults than purely random testing at no extra cost in terms of
execution time. It is thus more relevant to investigate the more effective strategy. As this strategy
is still not only random-based but also uses special predefined values (which have a high impact
on the results), in the rest of this article we use the term random+ testing to refer to it.

1.1.1. Predictability of random+ testing. The experiment for investigating the predictability of
random+ testing consisted of generating and running tests with AutoTest for 27 classes from a
widely used Eiffel library, which was not modified in any way. Each class was tested for 90min. To
assess the predictability of the process, testing sessions ran for each class 30 times with different
seeds for the pseudo-random number generator. The main results are the following:

1. On average 30% of the overall number of faults detected during the experiments are found
after 10min. After 90min, on average, an additional 8% points of the overall number of
randomly detected faults are found.

2. In terms of the relative number of detected faults (relative to the overall number of faults
detected via random testing), random+ testing is highly predictable, as measured by a low
standard deviation.

3. Different runs of the testing process reveal different faults.

A package including the results and the source code of AutoTest is available online¶. It contains
everything needed for the replication and extension of the experiments described in this article.

1.1.2. Nature of faults. The above results as well as some other earlier works [9, 15, 16] lead
to the conjecture that the number of faults is too coarse a criterion for assessing and comparing
testing strategies. Consequently, the present article investigates whether or not the nature of faults
is a more suitable discriminator between different fault detection strategies.

This article evaluates three ways of revealing faults. These are manual unit testing, field use
(with corresponding bug reports), and random+ testing. They are representative of today’s state of
the art: the first two are widely used in the industry, and the last reflects the research community’s
current interest in automated testing solutions.

More specifically, AutoTest ran on 39 classes from EiffelBase, again without modification, and
found a total of 165 faults. To investigate the performance of manual testing, these faults are
compared with the faults found by the students who were explicitly asked to test three classes,
two created by the authors and one slightly adapted from EiffelBase. Faults in the field are taken

§The widely spread view that developers do not see the advantages of contracts and will not go through the trouble
of writing them is contradicted by a broad empirical study [13] that shows that programmers do write contracts,
even if not complete ones.
¶http://se.inf.ethz.ch/people/ciupa/public/random oo testing experiment.zip.
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from user-submitted bug reports on the EiffelBase library. These three ways of revealing faults
are evaluated by comparing the number and distribution of faults they detect via a custom-made
classification that contains 21 categories.

The results of this study provide more empirical evidence that different strategies do indeed
uncover significantly different kinds of faults. Random+ testing is particularly good at detecting
problems found in specifications. It is not so good at detecting problems of overly strong precon-
ditions, infinite loops, and ‘semantic’ problems as discussed below. It detects most of the faults
uncovered by manual testing, plus some. This suggests that random+ testing should be applied
before human testers enter the loop. In addition, random+ testing finds only a small percentage of
user-reported faults; this suggests that random+ testing cannot replace collecting bug reports from
software users.

A more general conclusion is that testing strategies should indeed be compared in terms of the
nature of faults and not only the number of faults that they find.

1.2. Contributions

Reflecting on the two sets of research questions, the contributions of the present work can be
summarized as follows. First, this work presents empirical evidence on the predictability of
random+ testing. While the effectiveness of random testing has been studied before, there is no
other investigation on its predictability. Such an investigation is important because being able
to quantify the influence of randomness in the results of a testing session is necessary in order
to make an informed decision about when to stop testing and to make estimations about the
remaining faults that could be found by random testing. Naturally, predictability alone does not
suffice for characterizing the performance of random testing or for comparing it with other testing
strategies; having a predictable random testing process is, however, necessary for being able to
compare the performance of random testing with that of another testing strategy and have significant
results.

Second, fault classifications have previously been used to analyze the difference between inspec-
tions and software testing. Yet, this is the first study that (1) develops a classification of faults
specifically targeted at contracted O-O software and (2) uses this classification to compare an
automated random testing strategy with manual testing, and to furthermore compare testing results
with faults detected in the field. The nature of faults has not been used when comparing random
testing with other ways of detecting faults.

Combining these two parts of the analysis yields a comprehensive picture of the performance
of random testing for object-oriented software and highlights its strengths and weaknesses.

Earlier descriptions of the experiments on predictability and the nature of faults have been
provided in two conference publications [16, 17].

1.3. Overview

Section 2 provides the background for random+ tests of O-O software and introduces the AutoTest
tool. Section 3 describes the experiments and results that were used to assess the predictability of
random+ testing. Section 4 presents the experiments and results that relate to the nature of faults.
In particular, it contains the classification of faults. After putting this work in context in Section
5, this article presents the associated conclusions in Section 6.

2. RANDOM TESTS FOR OBJECT-ORIENTED PROGRAMS

This section explains the testing technique used for the experiments described in this article. It first
defines the notions of test case (Section 2.1) and fault and failure (Section 2.2) as used throughout
this article. Section 2.3 explains the test case synthesis algorithm used. Finally, Section 2.4 presents
AutoTest, the testing framework in which the algorithm is implemented.
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2.1. Unit tests

All the tests performed in the experiments are unit tests of O-O software. It is hence important to
start by defining and discussing the notions of unit, test input, and oracle in the context of O-O
software.

1. In general, the purpose of unit testing is to verify the run of a certain program unit.
In practice, the purpose of a unit test (xUnit-style) is most often to verify the run of a
particular routine. Typically this is reflected in the names of manually written unit tests,
when, for instance, a routine x is tested by the test routine named test x . What happens,
however, if routine x itself calls other routines (e.g. routine y)? In a strict interpretation
of unit testing, these other routines are not under test and must be replaced by simple
stubs that are hard-coded to work with the given test only. In practice this does not always
happen. The called routine (y) is stubbed only if it is non-trivial, if it conceptually belongs
to another ‘unit’ or if it depends on an environment that is difficult to set up automati-
cally. These criteria cannot be judged automatically and require the knowledge of the test
engineer.

2. A unit test needs test input. Test input can be created either by directly writing bits to memory
(similar to how previously saved objects are loaded into memory through deserialization) or
by issuing a series of constructor calls that create and modify data through normal means.
These two techniques have different advantages: creating the state directly gives complete
control over the input creation, while creating the data through constructor calls yields data
that is more likely to be relevant.

3. The oracle or the expected output part of a test case can be provided at different levels of
abstraction: it can be as concrete as specifying exactly the expected output, it can specify a
condition that the output should fulfil for a particular input, it can specify conditions that the
output should fulfil for any input, or it can be as abstract as specifying ‘no exception’ as the
expected output. The more concrete the oracle, the easier it is to express complex scenarios.
The more abstract the oracle, the easier it is to re-use for other tests and the less likely it is
to introduce an implementation bias.

The experiments described in Section 3 of this article ran for 1215 h. For experiments of this
size, it is important that the notion of test case be chosen with automation and efficiency in
mind. Testing must be completely automated, requiring no human intervention and pre or postpro-
cessing. For practical reasons, the following choices were made, with regard to the issues stated
above:

Unit: In accordance with common practice, the routine is the unit under test. The test synthesizer
creates test cases and the goal of each test case is to test one particular routine. No stubbing
techniques were used because stubs cannot be automatically created.

Input: Input objects are created through regular constructor and routine calls, because it is much
more likely to end up with a valid object (one that satisfies its invariant) when creating it through
a constructor call than when writing arbitrary bits to memory. Hence creation through execution
promises to be more efficient. In order to enforce more diversity, objects are also modified once
they are constructed via regular routine calls. If objects were not modified, test cases would only
be using objects in their initial state. In order to improve the efficiency of testing, objects are
re-used from previous test cases for new tests to some degree. As tests are likely to modify these
objects, this results in some diversification as well.

Oracle: In order to achieve full automation, contract-based oracles are used. A contracted
program contains its specification in the form of routine pre and postconditions and class invariants.
Preconditions are used as filters for invalid input: if a routine is called by the test and its precondition
is violated, the test is invalid and hence worthless. Postconditions are used to detect failures:
if the test calls a routine and satisfies its precondition, the routine body gets executed; if after
the execution of the routine body the postcondition is violated, the test revealed a fault in the
routine.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:3–28
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2.2. Faults and failures

In this article, the notions of faults and failures are largely determined by the contract-based oracle.
In general, a failure is an observed difference between the actual and intended behaviours. An
error is a program state that is not in accordance with the intended state. Errors may (but do not
have to) lead to failures. In this article, every contract violation (except for the case when a test
case directly violates the precondition of the routine under test) is interpreted as a failure. However,
programmers are interested in faults in the software: wrong pieces of code that trigger the failures.
Hence, an analysis of random testing should consider the detected faults, not the failures.

Mapping failures to faults is a part of the debugging process and is usually done by humans.
This is the case for the results reported in Section 4, but for the experiment reported in Section
3, in which around 6 million failures were triggered, this was not possible. Instead results rely on
an approximation that maps failures to faults based on the following assumption: two failures are
a consequence of the same fault if and only if they manifest themselves through the same type
of exception, being thrown from the same routine and the same class (contract violations result
in exceptions as well). Throughout this article, the term ‘fault’ is used in this sense. Thus, the 6
million failures recorded in the experiment were mapped to a lot fewer faults in the code, because
each fault triggered many failures at runtime.

Another note about identifying faults is necessary here. As explained above, no stubs are used
for the tests, so a routine under test may not be able to function correctly due to another routine
that it calls. Strictly speaking, the fault is not in the routine under test, but still this routine cannot
function correctly (cannot fulfil its own contract) due to one of its suppliers. The routine under
test is hence reported as being faulty (but not the called routine as well).

The contract-based oracle finds mismatches between the specification and the implementation.
Deciding if a particular fault is due to incorrect code or an incorrect specification requires deciding
whether there is a mismatch between the intended and the given specification. This is discussed
in detail in Section 4.

2.3. Test case synthesis algorithm

As mentioned above, the units under test are routines of Eiffel classes. Assume that a routine
m with return type R and formal arguments p1, . . . , pn of types C1, . . . ,Cn is defined in some
class C . In order to test m, an object c of type C must be generated along with actual arguments
a1, . . . ,an of types C1, . . . ,Cn . Since a test case consists of both input and expected output, an
object r of type R that represents the expected output is also generated. One can then execute
c.m(a1, . . . ,an), compare the resulting object with r , and check if the effect of m on c and the
ai is as expected. The inputs (the target object c and the argument objects ai ) are generated
through constructor calls, which themselves are routines and may need arguments; hence, the
generation procedure is recursive.

As a program executes, objects are modified and may hence lead to interesting inputs for testing
routines. In order not to use only freshly created objects when invoking routines, objects are stored
in an object pool. Parameters for routine invocations are then created or chosen probabilistically:
with a predefined probability, a new object is created; and with the complement of that probability,
an existing object is picked from the pool. Over time, the object pool contains more and more
complex objects and object structures that are used for testing. Further details about the input
generation process are available in previous publications [16, 17].

As mentioned above the oracle is contract-based. Rather than generating an object r of type
R and checking the effects of executing m on c and the ai , the contracts are natural oracles:
when the execution of c.m(a1, . . . ,an) finishes, AutoTest checks if the postcondition of m and the
invariant of C are satisfied. In other words, the oracle is free, namely in the form of postcondi-
tions and invariants.

The generation of tests is guided by the selection of routines to be tested, and then by the
creation or selection of argument objects. Because routines can be executed in arbitrary order and
potentially infinitely, there is no natural notion of sampling tests (executions) of a program, and,
consequently, this article cannot report on the statistical properties of this process.
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2.4. AutoTest

The algorithm described above constitutes the backbone of a contract-based testing tool called
AutoTest, which allows the easy plug-in of different testing strategies. The tool is launched from
the command line with a testing time and the names of the classes to test. It then tests these classes
according to the plugged strategy (random+ testing in this article) for the given time. At the end of
the testing session it delivers the results, which include minimized failure-reproducing examples,
if any, and statistics about the testing session.

In order to increase robustness, AutoTest is composed of two processes. The test generator,
also called ‘driver,’ implements the testing strategy and issues simple commands (such as object
creation and routine invocation) to another process, an interpreter, which carries out the actual test
execution. If failures occur during testing from which the interpreter cannot recover, the driver
shuts it down and then restarts it, resuming testing where it was interrupted.

Restarting the interpreter has an important consequence: it triggers the reinitialization of the
object pool (Section 2.3). Subsequent routine calls will not be able to use any of the objects created
previously, but must start from an empty pool and build it anew.

When AutoTest tests a class, it tests all its routines. AutoTest keeps track of the number of times
each routine was called and has the following fairness policy: it tries to call each routine once
before it calls any of them a second time. To achieve this, it associates priorities with the routines
and changes these priorities so that they reflect how often the routine was called. An interpreter
restart does not cause the resetting of these priorities, so the fairness criterion is preserved across
multiple interpreter sessions.

During the testing sessions, AutoTest may trigger failures in the class under test and also in
classes on which the tested class depends. There are two ways in which failures can be triggered in
other classes than the one currently under test. First, a routine of the class under test calls a routine
of another class, and the latter contains a fault that affects the caller. Second, the constructor of
another class, of which an instance is needed as argument to a routine under test, contains a fault.

AutoTest reports faults from the first category as faults in the class under test. This is because,
although the routine under test is not responsible for the failure, this routine cannot function
correctly due to a faulty supplier and any user of the class under test should be warned of this.
Faults from the second category, however, are not counted. This is because these experiments focus
on faults found in the class under test only. Such tests are nevertheless also likely to reveal faults
(cf. the related analysis on the benefits of ‘interwoven’ contracts [18]).

The stopping criterion used by AutoTest is time. The reason is that the questions to answer
here should take into account testing time rather than the number of test cases because the testing
process used throughout this article is fully automatic. If manual pre or postprocessing per test
case was required, the number of test cases would be more significant. In the absence of such
manual steps, the only limiting factor is time.

There is also a conceptual problem in using the number of executed test cases as the stopping
criterion. Most often the routine under test calls other routines. Because every routine execution
contains its own oracle, not only top level routine calls count as a test case. Of course some of the
routines called might not be of interest for testing, but others will. It is, hence, not completely clear
what the number of executed tests should refer to: the number of synthesized routine invocations,
the number of total routine invocations (i.e. including the routines that are called by the routine
under test), the number of routine invocations on the system under test, or maybe some combina-
tion thereof.

3. NUMBER OF FAULTS

One of the research questions that this work aims to answer addresses the predictability of random+
testing. Recall that testing a class means that all routines in this class are tested. If one particular
run of the testing tool on a class revealed a number of faults in this class, is another run of the
testing tool on that class, for the same duration but using a different seed for the pseudo-random
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Table I. Metrics of the tested classes.

Average Median Minimum Maximum

LOC 477.67 366 62 2600
Routines 108.37 111 37 171
Attributes 6.26 6 1 16
LOCC 111.07 98 53 296
Faults 39.52 38 0 94

number generator, likely to reveal a similar number of faults and, furthermore, the same faults
in the class under test? The experiment devised to answer these questions consisted in running
AutoTest in several sessions on classes from the most widely used Eiffel library, without making
any change to the classes, and comparing the results of 90min long test sessions using different
seeds for the pseudo-random number generator.

This section describes the experiments (Section 3.1), the results and their interpretation
(Section 3.2), and finally discusses the threats to the validity of generalizations of the results
(Section 3.3).

3.1. Experimental setup

In the experiments, each of the 27 classes was tested in 30 sessions of 90min each, where in
each session a different seed was used to initialize the pseudo-random number generator used for
input creation. The total testing time was thus 30∗27∗90min=50.6 days. All the tested classes
were taken unmodified from the EiffelBase library version 5.6, which is used in almost all projects
written in Eiffel. This library is comparable with the system library in Java or C#. The tested
classes include widely used classes like STRING or ARRAY and also more seldom used classes
such as FIBONACCI or FORMAT DOUBLE. Table I shows various statistics of the code metrics
of the classes under test: lines of code, number of routines, attributes, number of lines of contract
code (LOCC), and the total number of faults found in the experiments. These statistics are meant to
give an overview of the sizes of the classes. Detailed information about the class sizes is available
online‖. The number of routines, attributes, and contracts includes the part that the class inherits
from ancestors, if any.

The experiments were run on 10 dedicated PCs equipped with Pentium 4 at 3.2GHz, 1Gb of
RAM, running Linux Red Hat Enterprise 4 and ISE Eiffel 5.6. The AutoTest session was the only
CPU intensive program running at any time.

3.2. Experimental results

Over all in 27 classes, the number of detected faults ranges from 0 to 94, with a median of 38 and
a standard deviation of 28. In two of the classes (CHARACTER REF and STRING SEARCHER),
the experiments did not uncover any faults. Figure 1 shows the median absolute number of faults
detected over time for each class.

In order to get aggregated results, it is important to consider the normalized number of faults
over time. This number is obtained for each class by dividing the number of faults found by each
test run by the total number of faults found for this particular class. The result is shown in Figure
2. When averaging over all 27 classes, 30% of the overall number of faults detected during the
experiments are found after 10min, as witnessed by the median of medians reaching 0.3 after
10min in Figure 2. After 90min, on average, an additional 8% points of the overall number of
randomly detected faults are found.

The main question of this section is: how predictable is random+ testing? Two kinds of
predictability are considered: one that relates to the number of faults, and one that relates to the
identity of faults and that essentially investigates if it is likely to detect the same faults, regardless

‖http://se.inf.ethz.ch/people/ciupa/public/random oo testing experiment.zip.
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Figure 2. Medians of the normalized numbers of faults found in each class; their median.

of which of the 30 experiments is chosen. This provides insight into the influence of random-
ness (or, in more technical terms, the influence of the seed that initializes the pseudo-random
number generator). Furthermore, it also considers how long it takes to detect a first fault and how
predictable random+ testing is with respect to this duration.

To assess the predictability of the number of detected distinct faults, one can examine the
standard deviations of the normalized number of faults detected over time (Figure 3). With the
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Figure 3. Standard deviations of the normalized numbers of faults found in each class; their
median and standard deviation.

exception of INTEGER REF, an outlier omitted in the figure, the standard deviations lie roughly
in-between 0.02 and 0.06, corresponding to 2 to 6% of the relative number of errors detected. To
present aggregated results across all classes, the median and the standard deviation of the standard
deviations of the normalized number of detected faults are shown in the same figure (median of
standard deviations: upper thick line, standard deviation of standard deviations: lower thick line
in Figure 3). The median of the standard deviations of the normalized numbers of detected faults
decreases from 4 to 2% in the first 15min and then remains constant. Similarly, the standard
deviation of the standard deviations of the normalized number of detected faults linearly decreases
from 3 to 1.5% after 10min, and then remains approximately constant.

The median and standard deviation of the standard deviations being rather small suggests that
different runs of the random testing tool uncover approximately the same numbers of faults; hence,
random+ testing is, in terms of the relative number of detected faults, rather predictable in the first
15min, and strongly predictable after 15min. In sum, this somewhat counter-intuitively suggests
that in terms of the relative number of detected faults, random+ testing of O-O programs is indeed
predictable.

An identical relative number of faults does not necessarily indicate that the same faults are
detected. If all runs detected approximately the same errors, then the normalized numbers of
detected faults would be close to 1 after 90min. This is not the case (median 38%) in the
experiments: random+ testing exhibits a high variance in terms of the actual detected failures, and
thus appears rather unpredictable in terms of the actual detected faults.

Thus, it seems that different runs of the random testing tool on the same class under test uncover
approximately the same number of faults, but still partially different faults. A possible explanation
for this result could take into account the ‘sizes’ of the uncovered faults: as defined by Offutt and
Hayes [19], the semantic size of a fault in a program is ‘the relative size of the subdomain of D
for which the output mapping is incorrect’, where D is the input domain of the program. Using
this definition to explain the results of the present study, one could conjecture that different runs
of the testing tool on the same class uncover faults with similar semantic sizes, and hence with
approximately equal probabilities of being found through random testing. However, this semantic
size of faults is only straightforward to calculate for programs with input domains having simple
structures, as is the case, for instance, for primitive types. The inputs of object-oriented programs
have inherently complex structures, which makes it very difficult, if at all possible, to calculate a
size for the input domains and hence to calculate the semantic sizes of faults. It, therefore, seems
dangerous to rely on such measures to explain the results of this study.

Examining the number of experiments (out of the total 30 runs per class) in which a particular
fault was revealed sheds more light into the overlappings and differences, in terms of the faults
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Figure 4. Number of faults found in 1, 2, . . . , all 30 experiments for every class.
Twenty-five per cent of all faults are uncovered by only 1 or 2 out of 30 experiments,

19% of all faults are uncovered in all 30 experiments.

found, between different runs of the test generator for each class. Each fault can be found 1 to 30
times; that is, it can be found only in 1 or in several and up to all 30 experiments (for a particular
class). Figure 4 shows how many faults were found 1 to 30 times and it reveals an interesting
tendency of random+ testing: 25% of all faults are uncovered by only 1 or 2 out of 30 experiments,
19% of all faults are uncovered in all the 30 experiments.

The fact that many more faults are found in all 30 than in only 23 to 29 experiments may be
surprising at first, but it is explainable through the nature of the testing process that was performed:
random testing combined with special value testing. There are certain faults that AutoTest finds
with high probability because these faults are evidenced through inputs (such as void pointers or
minimum/maximum integer) that AutoTest uses with high probability. It is hence more likely that
AutoTest finds, for example, a Void-related fault in all 30 experiments than that it finds it in only
a subset of the 30 experiments.

Finally, when analyzing the results, it was surprising to see that for 24 out of the 25 classes
in which faults were found, at least one experiment detected a fault in the first second. Taking
a slightly different perspective, testing any class 30 times, 1 s each, could as well be performed.
This means that within the experimental setup, random+ testing is almost certain to detect a fault
for any class within 30 s. In itself, this is a rather strong predictability result.

This unexpected finding raised another question: in terms of the efficiency of the technology, is
there a difference between long and short tests? In other words, does it make a difference to test
one class once for 90min rather than 30 times for 3min?

To answer this question, this article also analyzes how the number of faults detected when testing
for 30min and changing the seed every minute compares with the number of faults found when
testing for 90min and changing the seed every 3min and with the number of faults found when
testing for 90min without changing the seed. Here, longer test runs serve as an approximation to
longer test sequences. The comparison hence involves testing sessions of different durations: 30×1
vs 30×3 vs (median of) 1×90min. The inclusion of the 30×1min session allows investigating
the effects of shorter test sessions—and produced unexpectedly good results.

Figure 5 shows the results of a class-by-class comparison. The numbers indicate that the strategy
using each of the 30 seeds for 3min (90min altogether) detects more faults than using each of
the 30 seeds for 1min (30min altogether). Because the testing time is three times larger in the
former than in the latter case, this is not surprising. Note, however, that the normalized number of
faults is not three times higher. On more comparable grounds (90min testing time each), collating
30 times 3min of test yields considerably better results than testing for 90min. Recall that the
present approach to random testing relies on the notion of an object pool (Section 2.3). This object
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Figure 5. Cumulated normalized numbers of faults after 30∗3 and 30∗1min; median normalized
number of faults after 90min.

pool constitutes (one part of) the state of the AutoTest tool, which explains why it is not necessarily
the case that n sessions of duration m trigger the same distribution of failures as do m sessions of
duration n.

This finding suggests that short tests are more effective than longer tests However, a more
detailed analysis reveals that this conclusion is too simple. As it turns out, the interpreter needs to
be restarted at least once during most of the experiments (cf. Section 2). In fact, there were only
60 experiments during which no interpreter restart occurred. Such a restart is similar to beginning
a new experiment in that, as explained in Section 2.4, the object pool is emptied and must be
constructed anew. Interpreter restarts do not, however, affect the scheduling of calls to routines
under test: AutoTest preserves the fairness criteria and tries to call first routines that were tested
the least up to that point. Because of these interpreter restarts, it is difficult to directly hypothesize
on the length of the test cases. In fact, there is no explanation so far of this stunning result, and
its study is the subject of ongoing and future work.

3.3. Threats to validity

The classes used in the experiment belong to the most widely used Eiffel library and were not
modified in any way. They are diverse both in terms of various code metrics and of intended
semantics, but naturally their representativeness of O-O software is limited.

A further threat to the validity of the present empirical evaluation is that the interpreter restarts
to trigger the emptying of the object pool. This puts a limit to the degree of complexity that the
test inputs can reach. In the experiments, the interpreter restarts occurred at intervals between less
than a minute and over an hour. Even for the same class, these restarts occur at widely varying
intervals, so that some sessions reach presumably rather complex object structures, and others only
very simple ones.

AutoTest implements one of several possible algorithms for randomly generating inputs for O-O
programs. Although the algorithm is as general as possible through various parameters, there exist
other methods for generating objects randomly, as explained in Section 5. As such, the results
of this study apply only to the specific algorithm together with specific choices for technical
parameters for random+ testing implemented in AutoTest.
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The full automation of the testing process—necessary also due to the sheer number of tests
generated and executed in the experiment—required an automated oracle: contracts and exceptions.
This means that naturally any fault that does not manifest itself through a contract violation or
another exception could not be detected and included in the results presented here. Furthermore,
faults are approximated by failures as described in Section 2.2. The automatic mapping from
failures to faults could have led to faults being missed.

The experiments reported here were performed only on classes ‘in isolation,’ not on an entire
application. This means that the routines of these classes were the only ones tested directly. The
routines that they transitively call are also implicitly tested. The results would probably be different
for a wider testing scope, but timing constraints did not allow testing of entire applications.

The initial fault population naturally has an influence on the outcome of random tests and affects
the results of the study. This experiment did not involve seeding any faults in the code on which
AutoTest was run, but there is no information about how and to what extent the code was tested
before; it is hence unknown how this previous testing affected the remaining fault population. In
particular, it seems reasonable to assume that if the code had been random tested before, some of
the faults found in the present experiment would have been removed and the results of this study
would have been different.

As explained in Section 3.2, for 24 out of the 25 classes in which the experiments uncovered
faults, there was at least one experiment in which the first fault for a class was found within the first
second of testing. The vast majority of these faults are found in constructors when using either an
extreme value for an integer or Void for a reference-type argument. It is thus questionable whether
these results generalize to classes that do not exhibit one of these types of faults. However, as
stated above, in the experiment 24 out of the 27 tested classes did contain a maximum integer or
Void-related fault.

4. NATURE OF FAULTS

While the number of faults detected by random+ testing is predictable, one must also examine
if this strategy finds a superset or a subset of the faults found by human testers and users of the
software.

This section compares, first, the faults found by regular users with faults found by random+
testing. Second, it compares faults found by human testers with faults found by random+ testing.
While random+ testing discovers many more faults than either of the other strategies, it does not
discover the same kind of faults. In particular, there are categories of faults that are only found by
random+ testing and categories of faults that random+ testing fails to uncover.

Several such categories are presented herein. Consequently, the section starts by presenting a
classification of faults that was used to compare random+ testing with the other two strategies
(Section 4.1). It then describes the artifacts examined in the experiment and how the experiment
was conducted (Section 4.2), and proceeds to the results of the experiment (Section 4.3) in terms of:
(1) a comparison of the type of faults found by AutoTest and reported by users for the EiffelBase
library; and (2) a comparison of the type of faults found by AutoTest and by manual testers for a set
of classes created by the authors and one class taken almost verbatim from the EiffelBase library.
The section then summarizes the results, discusses the most important findings, and concludes
with a presentation of the threats to the validity of generalizing the results (Section 4.4).

4.1. Classifications of faults

In programming languages with support for embedding executable specifications, a fault can be
characterized by two dimensions: location and cause. The location defines whether it occurs
in the specification or in the implementation. The cause defines the real underlying issue. The
following paragraphs discuss both the dimensions and introduce the resulting fault categories. The
classification is not domain-specific. Although other fault classification schemes exist, as discussed
in Section 5, there is no other scheme for contracted code.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:3–28
DOI: 10.1002/stvr



16 I. CIUPA ET AL.

4.1.1. Specification and implementation faults. In contract-equipped programs, the software spec-
ification is embedded in the software itself. Contract violations are one of the sources of failures.
Hence, faults can be located both in the implementation and in the contracts.

A specification fault is a mismatch between the intended functionality of a software element
and its explicit specification (in the context of this study, the contract). Specification faults reflect
specifications that are not valid, in the sense that they do not conform to user requirements.
The correction of specification faults requires changing the specification (plus possibly also the
implementation) [9]. As an example, consider a routine deposit of a class BANK ACCOUNT
with an integer argument representing the amount of money to be deposited into the account. The
intention is for that argument to be positive, and the routine only works correctly in that case. If
the precondition of deposit does not list this property, the routine has a specification fault.

In contrast, an implementation fault occurs when a piece of software does not fulfil its explicit
specification, here its contract. The correction of implementation faults never requires changing
the specification. Suppose that the class BANK ACCOUNT also contains a routine add value that
should add a value, positive or negative, to the balance of the account. If the precondition does
not specify any constraint on the argument but the code assumes that it is a positive value, then
there is a fault in the implementation.

The notion of specification fault assumes that it is possible to have access to the ‘intended
specification’ or user requirements of the software: the real specification that it should fulfil.
When analyzing the faults in real-world software, this is not always possible. Discussing it with
the original developers is also in most cases difficult or even impossible. To infer the intended
specification, one must rely on subjective evidence such as: the comments in the routines under test;
the specifications and implementations of other routines in the same class; how the tested routines
are called from various parts of the software system. This strategy resembles how a developer not
familiar with the class would proceed in order to find out what the software is supposed to do.

4.1.2. Classification of faults by their cause. Some kinds of specification and implementation
faults tend to recur over and over again in practice. Their study makes it possible to obtain a
finer-grained classification by grouping these faults according to the corresponding human mistakes
or omissions—their causes. By analyzing the cause of all faults encountered in the study, the
categories described below emerged. The classification was created with practical applicability
in mind and mainly focuses on either a mistake in the programmer’s thinking or a misused
programming mechanism.

4.1.2.1. Specification faults. An analysis of specification faults led to the following cause-based
categories, grouped by the type of contract to which they apply.

1. Faults related to preconditions:

• Missing non-voidness precondition: A precondition clause is missing, specifying that a
routine argument, class attribute, or other reference denoted by an argument or attribute
should not be void (null).

• Missing min/max-related precondition: a precondition clause is missing, specifying that
an integer argument, class attribute, or other integer denoted by an argument or attribute
should have a certain value related to the minimum/maximum possible value for integers.

• Missing other precondition part: a precondition is under-specified in another way than in
the previous cases.

• Precondition disjunction due to inheritance: with multiple inheritance it can be the case
that a routine merges several others, inherited from different classes. In this case, the
preconditions of the merged routines are composed using disjunction with the most current
ones. Faults in this category appear because of this language mechanism (e.g. disjunction
with true in case a precondition was not specified).

• Precondition too restrictive: the precondition of a routine is stronger than it should be.
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2. Faults related to the postcondition include wrong postcondition (the postcondition of a routine
is incorrect) and missing postcondition (the postcondition of a routine was omitted).

3. Faults related to class invariants include only one kind: the missing invariant clause—a part
of a class invariant is missing.

4. Faults related to check∗∗ assertions include only one kind: the wrong check assertion—the
routine contains a check condition that does not necessarily hold.

5. Finally, the following faults apply to all contracts:

• Faulty specification supplier: a routine used by the contract of the routine under test††
contains a fault, which makes the contract of the routine under test incorrect.

• Calling a routine outside its precondition from a contract: the fault appears because
the contract of the routine under test calls another routine without fulfilling the latter’s
precondition.

• Min/max int-related fault in specification (other than missing precondition): the specifica-
tion of the routine under test lacks some condition(s) related to the minimum/maximum
possible value for integers. (Examples so far do not cover floating-point computation.)

The categories in this classification have various degrees of granularity. The reason is that the
classification was derived from faults obtained through widely different mechanisms: by AutoTest,
by manual testers, by users of the software. The categories emerged by identifying recurring
patterns in existing faults, rather than by trying to fit faults into a scheme defined a priori. Where
such patterns could not be found, the categories are rather coarse-grained.

4.1.2.2. Implementation faults. The analysis of implementation faults led to the following cause-
based categories:

• Faulty implementation supplier: a routine called from the body of the routine under test
contains a fault, which does not allow the routine under test to function properly.

• Wrong export status: this category refers particularly to the case of creation procedures
(constructors), which in Eiffel can also be exported as normal routines. The faults classified
in this category are due to routines being exported as both creation procedures and normal
routines, but which, when called as normal routines, do not fulfil their contract, as they were
meant to be used only as creation procedures.

• External fault: Eiffel allows the embedding of routines written in C. This category refers to
faults located in such routines.

• Missing implementation: the body of a routine is empty, often signaling an uncompleted
attempt at top–down algorithm design.

• Case not treated: the implementation does not treat one of the cases that can appear, the result
typically being that a necessary if branch is missing.

• Catcall: owing to the implementation of type covariance in Eiffel, the compiler cannot detect
(in the Eiffel version used) some routine calls that are not available in the actual type of the
target object. Such violations can only be detected at runtime. This class groups faults that
stem from this deficiency of the type system.

• Calling a routine outside its precondition from the implementation: the fault appears because
the routine under test calls another routine without fulfilling the latter’s precondition.

• Wrong operator semantics: the implementation of an operator is faulty, in the sense that it
causes the application of the operator to have a different effect than intended.

• Infinite loop: executing the routine can trigger an infinite loop, due to a fault in the loop exit
condition.

∗∗An Eiffel check instruction is similar to an ‘assert’ in C and C++. It states a condition that should be fulfilled at
a certain point in the execution of a block of code. If contract monitoring is on and the condition does not hold, the
execution triggers an exception.

††In Eiffel, contracts can include function calls.
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Three of the above categories are specific to the Eiffel language and would not be directly
applicable to languages that do not support multiple inheritance (precondition disjunction due to
inheritance), covariant definitions (catcalls), or the inclusion of code written in other programming
languages (external faults). All other categories are directly applicable to other object-oriented
languages with support for embedded and executable specifications.

4.2. Experimental setup

Recall that the purpose of the experiment is to investigate how the nature of faults reported by
random+ testing differs from the nature of faults reported by regular users and the nature of faults
found by manual testers. A significant difference in the distribution of faults in the categories
presented above would prove that none of the techniques subsumes any other.

To see how random+ testing performs, AutoTest was run on classes from the EiffelBase library
(Section 3). Overall, the experiment randomly tested 39 classes from the 5.6 version of the library
and found a total of 165 faults in them.

Bug reports from users of the EiffelBase library were then considered. From the database of
bug reports, those referring to faults present in version 5.6 of the EiffelBase library were selected
and those which were declared by the library developers to not be faults or those that referred to
the .NET version of EiffelBase, which AutoTest cannot test, were excluded. The analysis hence
refers to the remaining 28 bug reports fulfilling these criteria.

To determine how manual testing compares with random+ testing, a competition for students of
computer science at ETH Zurich was organized. Thirteen students participated in the competition.
They were given three classes to test. The task was to find as many faults as possible in these
three classes in 2 h. Two of the classes were written for the competition (with implementation,
contracts, and purposely introduced faults from various of the above categories), and one was an
adapted version of the STRING class from EiffelBase.

Table II shows some code metrics for these three classes: number of lines of code (LOC),
number of lines of contract code (LOCC), and number of routines. A class that was significantly
larger and more complex than the others was chosen intentionally, to see how the students would
cope with it. Although such a class is harder to test, intuition suggests that it is more likely to
contain faults. The students had varying experience in testing O-O software; most of them had
at least a few lectures on the topic. Nine out of the thirteen students declared that they usually
or always unit test their code as they write it. They were allowed to use any technique to find
faults in the software under test, except for running AutoTest on it. Although they would have
been allowed to use other tools (and this was announced before the competition), all the students
performed only manual testing. In the end they had to produce test cases revealing the faults that
they had found, through a contract violation or another exception.

4.3. Experimental results

4.3.1. Random+ testing vs user reports. Table III shows the distribution of specification and
implementation faults (1) found by random+ testing (labelled ‘AutoTest’ in the table) 39 classes
from the EiffelBase library and (2) recorded in bug reports from professional users. Note that the
results in this table refer to more classes tested with AutoTest than for which there are user reports:
even if there are no user reports on a specific class, the class may still have been used in the field.

Table II. Classes tested manually.

Class LOC LOCC #Routines

MY STRING 2444 221 116
UTILS 54 3 3
BANK ACCOUNT 74 13 4
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Table III. Random+ testing vs user reports.

Spec. faults Implem. faults

AutoTest 103 (62.42%) 62 (37.58%)
User reports 10 (35.71%) 18 (64.29%)

Table IV. Random+ testing vs user reports: specification and implementation faults.

Number of faults Percentage of faults

Cause Id AutoTest Users AutoTest (%) Users (%)

Specification faults
Missing non-voidness precondition S1 22 0 13.33 0.00
Missing min/max-related precondition S2 23 0 13.94 0.00
Missing other precondition part S3 28 3 16.97 10.71
Faulty specification supplier S4 7 0 4.24 0.00
Calling a routine outside its precondition from a contract S5 0 0 0.00 0.00
Min/max int related fault in spec (other than missing
precondition) S6 4 0 2.42 0.00
Precondition disjunction due to inheritance S7 2 0 1.21 0.00
Missing invariant clause S8 3 0 1.82 0.00
Precondition too restrictive S9 0 2 0.00 7.14
Wrong postcondition S10 12 2 7.27 7.14
Wrong check assertion S11 2 0 1.21 0.00
Missing postcondition S12 0 3 0.00 10.71

Specification faults total 103 10 62.42 35.71

Implementation faults
Faulty implementation supplier I1 47 0 28.48 0.00
Wrong export status I2 0 2 0.00 7.14
External fault I3 1 0 0.61 0.00
Missing implementation I4 2 2 1.21 7.14
Case not treated I5 4 7 2.42 25.00
Catcall I6 3 1 1.82 3.57
Calling a routine outside its precondition from
the implementation I7 5 1 3.03 3.57
Wrong operator semantics I8 0 1 0.00 3.57
Infinite loop I9 0 4 0.00 14.29

Implementation faults total 62 18 37.58 64.29

Almost two thirds of the faults found by random+ testing were located in the specification of
the software, that is, in the contracts. This indicates that random+ testing is especially good at
finding faults in the contracts. In the case of faults collected from users’ bug reports, the situation
is reversed: almost two thirds of user reports refer to faults in the implementation.

Table IV presents a more detailed view of the specification and implementation faults found by
AutoTest and recorded in users’ bug reports, grouping the faults by their cause, as explained in
Section 4.1.

This detailed comparison sheds more light on the differences between the faults reported by
users and those found by automated testing, and exposes strengths and weaknesses of both the
approaches. One difference that stands out involves faults related to extreme values (either Void
references or numbers at the lower or higher end of their representation interval) in the specification.
Around 30% of the faults uncovered by AutoTest are in one of these categories, whereas users
do not report any such faults. Possible explanations are that such situations are not encountered
in practice; that users do not consider them to be worth reporting; or that users rely on their
intuition of the range of acceptable inputs for a routine, rather than the routine’s precondition, and
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their intuition corresponds to the intended specification, not to the erroneous one provided in the
contracts.

Symmetrically, AutoTest does not find some faults that users report. In a sense, this is not
surprising as AutoTest does not take into account the operational profile of the tested classes and
tests all input values equally, except for the limited set of special values that are tested with a
higher priority. For example, a method using the speed of a car (in km/h) would not expect input
values below −100 or above 2000 and most of the values would be comprised between 0 and
200 with a higher probability around 60. In such a case, AutoTest would test with priority inputs
around 0 and extreme integer values. The rest of the input would be evenly spread out through the
integer values and would thus be unlikely to belong to the interval between 10 and 200, which is
the interval that users would test with priority.

A further difference results from AutoTest’s ability to detect faults from the categories ‘faulty
specification supplier’ and ‘faulty implementation supplier.’ They mean that AutoTest can report
that certain routines do not work properly because they depend on other faulty routines. In the
examined bug reports, users never recorded such faults: they only indicated the routine that
contained the fault, without mentioning other routines that also did not work correctly because of
the fault in their supplier. An important piece of information gets lost this way: after fixing the
fault, there is no incentive to check whether the clients of the routine now work properly, meaning
to check that the correction in the supplier allows the client to work properly too.

Random+ testing is particularly bad at detecting some categories of faults: too strong precon-
ditions, faults that are a result of wrong operator semantics, infinite loops, missing routine imple-
mentations. None of the 165 faults found by AutoTest and examined in this study belonged to any
of the first three categories, but the users reported at least one fault in each. It is not surprising that
AutoTest has trouble detecting such faults. First, if AutoTest tries to call a routine with a too strong
precondition and does not fulfil it, the testing engine will simply classify the test case as invalid and
try again to satisfy the routine’s precondition by using other inputs. Second, AutoTest also cannot
detect infinite loops: if the execution of a test case times out, it will classify the test case as ‘bad
response’; this means that it is not possible for the tool to decide if a fault was found or not—the
user must inspect the test case and decide. Third, users of the EiffelBase library could report faults
related to operators being implemented with the wrong semantics. Naturally, to decide this, it is
necessary to know the intended specification of the operator. Finally, AutoTest also cannot detect
that the implementation of a routine body is missing unless this triggers a contract violation. An
automatic tool can of course, through code analysis, find empty routine bodies, but not decide if
this is a fault. Note that in these cases, the overall number of detected faults is rather low, which
suggests special care in generalizing these findings.

AutoTest was also run exclusively on the classes for which users reported faults to see if it
would find those faults (except for three classes which AutoTest cannot currently process as they
are either expanded or built-in). When run on each class in 10 sessions of 3min, AutoTest found
a total of 268 faults‡‡. Four of these were also reported by users, so 21 faults are solely reported
by users and 264 solely by AutoTest. AutoTest detected only one of the 18 implementation faults
(5%) reported by users and 3 out of the 7 specification faults (43%). While theoretically it could,
AutoTest did not find the user-reported faults belonging to such categories as ‘wrong export status’
or ‘case not treated’. Longer testing times might, however, have produced different results.

4.3.2. Random+ testing vs manual testing. To investigate how AutoTest performs when compared
with manual testers, AutoTest was run in 30 sessions of 3min (where each session used a different
seed for the pseudo-random number generator) on the three classes that were tested manually:
a slightly modified version of the STRING class from EiffelBase (also tested in the experiment
reported in Section 4.3.1) and two classes written by the authors. The reason for taking these

‡‡However, 183 of these faults were found through failures caused by the classes RAW FILE, PLAIN TEXT FILE, and
DIRECTORY through operating system signals and I/O exceptions, so it is debatable if these can indeed be
considered as faults in the software.
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two classes instead of classes from the EiffelBase library was the need to keep the code size
relatively small and to reduce the classes’ dependencies on the existing code; this somewhat not
only simplified the testers’ task, but also made it realistic to find faults in the given code in 2 h,
the time limit given to the manual testers. These two classes could not be used for the experiment
described in Section 4.3.1 because they had not been a part of an open source library or application
for years and hence of course-lacked user bug reports.

Table V shows a summary of the results. It displays a categorization of the fault according to the
classification scheme used in this article (the category ids are used here; they can be looked up in
Table IV), the name of the class where a fault was found by either AutoTest or the manual testers,
how many of the manual testers found the fault out of the total 13 and a percent representation of
the same information, and finally, in the last column, x’s mark the faults that AutoTest detected.

The table shows that AutoTest found 9 out of the 14 faults that humans detected and 2 faults
that humans did not find. The two faults that only AutoTest found do not exhibit any special
characteristics, but they occur in class MY STRING, which is considerably larger than the other
two classes. The conjecture is that, because of its size, students tested this class less thoroughly
than the others. This highlights one of the clear strengths of the automatic testing tool: the sheer
number of tests that it generates and runs per time unit and the resulting routine coverage.

Conversely, three of the faults that AutoTest does not detect were found by more than 60% of
the testers. One of these faults is due to an infinite loop; AutoTest, as discussed above, classifies
timeouts as test cases with a bad response and not as failures. The other two faults belong to
the categories ‘missing non-voidness precondition’ and ‘missing min/max-related precondition.’
Although the strength of AutoTest lies partly in detecting exactly these kinds of faults, the tool
fails to find them for these particular examples in the limited time it is given. This once again
stresses the role that randomness plays in the approach, with both advantages and disadvantages.

4.3.3. Discussion. Three main observations emerge from the preceding analysis.

1. Random+ testing is good at detecting problems in specifications. It is particularly good with
problems that are related to limit values. Problems of this kind are not reported in the field
but tend to be caught by manual testers.

2. AutoTest is not good at detecting problems with too strong preconditions, infinite loops,
missing implementations, and operator semantics. This is due to the very nature of automated
random testing.

3. In a comparison between automated and manual testing (i.e., not taking into consideration
bug reports), AutoTest detects almost all faults also detected by humans, plus a few others.

Table V. Random+ testing vs manual testing.

Id Class # testers AutoTest

S1 BANK ACCOUNT 8 (61.5%)
S1 UTILS 5 (38.5%) x
S1 MY STRING 1 (7.7%) x
S2 BANK ACCOUNT 8 (61.5%)
S2 UTILS 7 (53.8%) x
S2 MY STRING 1 (7.7%) x
S2 MY STRING 5 (38.5%) x
S2 MY STRING 1 (7.7%) x
S2 MY STRING 0 (0%) x
S3 BANK ACCOUNT 1 (7.7%) x
S3 UTILS 4 (30.8%) x
S10 MY STRING 1 (7.7%)
I2 BANK ACCOUNT 4 (30.8%) x
I6 MY STRING 1 (7.7%)
I7 MY STRING 0 (0%) x
I9 MY STRING 9 (69.2%)
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For model-based testing, this confirms the findings of an earlier study [9] and speaks strongly
in favour of running the tool on the code before having it tested by humans. The human
testers may find faults that the tool misses, but a great part of their work will be done at no
other cost than CPU power.

AutoTest finds significantly more faults in contracts than in implementations. This might seem
surprising, given that contracts are Boolean expressions and typically take up far fewer lines of
code than the implementation (14% of the code on average in this study). Two questions naturally
arise. First, are there more faults in contracts than in implementations, i.e. do the results obtained
with AutoTest reflect the actual distribution of faults? Second, is it interesting at all to find faults
in contracts, knowing that contract checking is usually disabled in production code?

There is no clear answer derived from the present set of results to the first question. There is no
evidence that there are more problems in specifications than in implementations. The only thing
to deduce is that random testing that takes special care of extreme values detects more faults in
specifications than in implementations. Around 45% of the faults are uncovered in preconditions,
showing that programmers often fail to specify correctly the range of inputs or conditions on the
state of the input accepted by routines.

It is also important to point out that a significant proportion of specification errors are due to
void-related issues, which are not present in newer versions of Eiffel, starting with 6.2 (Spring
2008). These implement the ‘attached type’ mechanism [20], which removes the problem by
making non-voidness part of the type system and catches violations at compile time rather than
runtime.

In terms of whether it is useful or interesting to detect and analyze faults in contracts, one
must keep in mind that most often the same person writes both the contract and the body of a
routine. A fault in the contract signals a mistake in this person’s thinking just as a fault in the
routine body does. Once the routine has been implemented, client programmers who want to use
its functionality from other classes look at its contract to understand under what conditions the
routine can be called (expressed by its precondition) and what the routine does (the postcondi-
tion expresses the effect of calling the routine on the state). Hence, if the routine’s contract is
incorrect, the routine will most likely be used incorrectly by its callers, which will produce a
chain of faulty routines. The validity of the contract is thus as important as the correctness of the
implementation.

The existence of contracts embedded in the software is a key assumption both for the proposed
fault classification and for the automated testing strategy used. This is not too strong an assumption
because it has been shown [13] that programmers willingly use a language’s integrated support
for Design by Contract, if available.

The evaluation of the performance of random+ testing performed here always considers the
faults that AutoTest finds over several runs, using different seeds for the pseudo-random number
generator. In the previous sections it was shown that random+ testing is predictable in the relative
number of faults it finds, but not in the actual faults it finds. Hence, in order to reliably assess the
types of faults that random+ testing finds, it is necessary to sum up the results of different runs of
the tool.

In addition to pointing out strengths and weaknesses of a certain testing strategy, a classification
of repeatedly occurring faults based on the cause of the fault also brings insights into those
mechanisms of the programming language that are particularly error-prone. For instance, faults
due to the wrong export status of creation procedures show that programmers do not master the
property of the language that allows creation procedures to be exported both for object creation
and for being used as normal routines.

Testing strategies can also be compared in terms of the perceived effect on the reliability of the
faults they find. For countable and finite input domains, this effect can be measured automatically
in terms of the semantic size of the faults, as proposed by Offutt and Hayes [19]. For input domains
whose elements have arbitrary complexity, as is the case for object-oriented programs, this is not
possible. An alternative in this case can be to ask software users to rate the effect on reliability of
the various faults. This was unfortunately not possible in the case of the study presented here.
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4.4. Threats to validity

The biggest threat to the generalization of the results presented here is the small size of the set of
manually tested classes, the analyzed user bug reports, and the group of human testers participating
in the study. Future work should expand this study to larger and more diverse code bases.

As explained in Section 4.2, the study only considered bug reports submitted by users for the
EiffelBase library. Naturally, these are not all the faults found in field use, but only the ones that
users took the time to report. Interestingly, for all but one of these reports the users set the priority
to either ‘medium’ or ‘high’; the severity, on the other hand, is ‘non-critical’ for seven of the
reports and either ‘serious’ or ‘critical’ for the others. This suggests that even users who take the
time to report faults only do so for faults that they consider important enough.

It was not possible to perform the study with professional testers, so bachelor and master
students of computer science were used instead; to strengthen the incentive for finding as many
faults as possible, this was a competition with attractive prizes for the top fault finders. In a
questionnaire they filled in after the competition, four of the students declared themselves to be
proficient programmers and nine estimated they had ‘basic programming experience.’ Seven of
them stated that they had worked on software projects with more than 10 000 lines of code and the
others had only worked on smaller projects. As mentioned in Section 4.2, two of the classes under
test given to the students were written by one of the authors, who also introduced the faults in
them. These faults were meant to be representative of the actual faults occurring in real software,
so they were created as instances of various categories described in Section 4.1, but naturally the
fact that they were seeded in code written by one of the authors introduces a bias. All these aspects
limit the generality of the present conclusions.

A further threat to generalization is due to the peculiarities of the random testing tool used.
AutoTest implements one particular algorithm for random testing and the results described here
would probably not be identical for other approaches to the random testing of O-O programs
(e.g. the one implemented in the JCrasher tool [21]). In particular, extreme values are used
to initialize the object pool (Section 2). While void objects are rather likely to occur in prac-
tice, extreme integer values are not. In other words, the approach, as mentioned earlier, is
not entirely random.

In addition as noted, compile-time removal of void-related errors will affect the results, for ISO
Eiffel and other languages (such as Spec# [22]) that have the equivalent of an ‘attached type’
mechanism.

Another source of uncertainty is the assignment of defects to a classification. Finding a consistent
assignment among several experts is difficult [23]. In this study, one person was assigned to this
task. While this yields consistency, running the experiment with a different person might produce
different results.

The programming language used in the study, Eiffel, also influenced the results. A few of the fault
categories are closely related to the language mechanisms that are misused or that allow the fault to
occur. This is to be expected in a classification of software faults based on the cause of the faults.

Finally, the ‘size’ of the faults in the various categories was not considered. As defined by Offutt
and Hayes [19], the semantic size of a fault is the relative size of the input subdomain for which
the fault triggers a failure at runtime. In other words, the size of a fault describes the effect of the
fault on the failure rate of the application. It would surely be interesting to look into the failure
rates for faults found through random testing, but a fundamentally different study than the one
reported here would be necessary for investigating this question.

5. RELATED WORK

This section presents the research related to the contributions of this article. It starts with an
overview of the state-of-the-art in random testing, then overviews some existing analytical and
empirical comparisons of different testing strategies, and finally briefly presents other fault clas-
sification schemes proposed in the literature.
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5.1. Random testing

In a comprehensive overview of random testing, Hamlet [24] stresses the point that it is exactly
the lack of system in choosing inputs that makes random testing the only strategy that can offer
any statistical prediction of significance of the results. Hence, if such a measure of reliability is
necessary, random testing is the only option. Furthermore, random testing is also the only option
in cases when information is lacking to make systematic choices [25].

The intuition that, for most programs, random testing stands little chance of coming across
‘interesting’ and meaningful inputs is contradicted by several reports on practical applications of
the method: random testing has been used to uncover faults in Java libraries and programs [21, 26],
in Haskell programs [27], in utilities for various operating systems [28, 29]. All these reports show
that random testing does find defects in various types of software, but they do not investigate its
predictability.

Perhaps due to this, the interest in random testing of O-O programs has increased greatly in
recent years. Proof of this are the numerous testing tools using this strategy developed recently
such as: JCrasher [21], Eclat [26], Jtest [30], Jartege [31], or RUTE-J [32]. The evaluations of
these tools are focused on various quality estimation methods for the tools themselves: finding real
errors in the existing software (JCrasher, Eclat, RUTE-J), in code created by the authors (Jartege),
in code written by students (JCrasher), the number of false positives reported (JCrasher), mutation
testing (RUTE-J), code coverage (RUTE-J). As such, the studies of the behaviours of these tools
stand witness for the ability of random testing to find defects in mature and widely used software
and to detect up to 100% of generated mutants for a class. These studies do not, however, employ
any statistical analysis that would allow drawing more general conclusions from them about the
nature of random testing.

Random input generation delivers the best results when combined with an automated oracle,
due to the numerous and untargeted tests that it produces. For a human it would be tedious to
wade through these tests, out of which only a small proportion are fault-revealing. The power of
random testing can be fully exploited only if the pass/fail decision is automated. A great part of
the existing work on fully automated testing [26, 31, 33–35] thus uses built-in test oracles in the
form of contracts. These can either be written by developers or inferred by a tool [36] from runs
of the system under test.

5.2. Comparisons of testing strategies

Several analytical studies [6, 8, 37] indicate that random testing can be as effective as (or even better
than) partition testing; others make the point that, under rather specific conditions, partition-based
testing will in general be at least as effective as random testing [5]. All these studies are theoretical
and focus on the comparison between partition and random testing, whereas the present study is
purely empirical and aims at investigating the predictability of random testing and at comparing
the faults that it finds to those found through manual testing and by users of the software.

Morasca and Serra-Capizzano [38] proposed a new method for comparing testing strategies in
terms of the expected number of triggered failures, based only on knowledge of the total order
or a hierarchical order of the failure rates of the subdomains of the input domain. This method
allows comparing random testing, subdomain-based testing techniques, testing strategies mixing
these two approaches, and adaptive testing techniques. While their work is purely analytical and
applicable to a wide variety of testing methods (under the given conditions), the work presented
here is empirical and makes no assumption about the failure rates of the software under test. It also
addresses the question of the type of faults found by random testing, not only the number of such
faults.

There are several empirical studies that compare the performance of various testing strategies
against that of random testing. For example, Duran and Ntafos [7] compared random testing to
partition testing and found that random testing can be as efficient as partition testing. Pretschner
et al. [9] found that random tests perform worse than both model-based and manually derived
tests. D’Amorim et al. [39] compare the performance of two input generation strategies (random
generation and symbolic execution) combined with two strategies for test result classification (the
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use of operational models and uncaught exceptions). An interesting result of their study refers to
the applicability of the two test generation methods that they compare: the authors could only run
the symbolic execution-based tool on about 10% of the subjects used for the random strategy and,
even for these 10% of subjects, the tool could only partly explore the code.

Numerous other studies [40–43] have compared structural and functional testing strategies as
well as code reading. Most of them have used small programs with seeded faults and compared
the results of two or three strategies. The four quoted studies compare the automated selection of
test cases using the control flow or the all-uses—respectively mutation or the all-uses—criteria
and their outcome in terms of faults uncovered by each strategy. None of these studies compares
manual testing with automated techniques. The present study compares random+ testing with
manual testing and user bug reports; it seems that this is the first time that these three methods of
identifying software faults are correlated.

5.3. Fault classification schemes

Many fault classification models have been proposed in the past [44–49]. Knuth [50] pioneered
the work on classification of defects by defining nine categories reflecting the faults that occurred
most often during the development of TeX.

The orthogonal defect classification (ODC) [44] combines two different classifications: defect
types and defect triggers. In a sense the present classification is an ODC in itself but the present
classification of defect types is finer while the defect location is simpler than defect triggers.

The IEEE classification [45] aims at building a framework for a complete characterization of the
defect. It defines 79 hierarchically organized types that are sufficient to understand any defect. In
the present case, using such categories would not have helped significantly because these categories
do not reflect the particular constructs of contract-enabled languages.

Ma et al. [51] define fault categories for Java programs and relate them to mutation operators.
It is unclear how the mapping from failures to these fault categories could be done automatically,
and the categories do not take contracts into account.

The classification probably most similar to the one presented here is that by Basili et al. [41–43],
organized in two dimensions: whether the fault is an omission or a commission fault, and to
which of six possible types it belongs. The present classification takes into account specifications
(contracts) and is more fine-grained.

Bug patterns [52, 53] are also related to this work. The present approach has to cope with
different constructs and thus defines categories adapted to Eiffel programs, taking into account
contracts and multiple inheritance.

6. CONCLUSIONS

In spite of several decades of research on the subject matter, there still is no conclusive evidence on
when to use a given test selection or assessment criterion, or when one criterion would outperform
another criterion. It is a long-term research goal to provide such evidence.

This problem can be tackled from different angles. One is to analyze selection or assessment
criteria in isolation. Measures of interest include the cost and the predictability with respect to
the number and kind of revealed faults. Because test selection criteria define an abstraction on
all possible executions of a system, many distinct test suites can satisfy one criterion. Whether
or not all these test suites detect the same faults is not always clear, which, among other things,
constitutes a problem when it comes to test suite minimization. In other words, predictability is
not only an issue with random testing, but likely also with, say, coverage criteria that relate to the
control flow. This kind of property is relevant when it comes to deciding which strategy should be
applied in a given development context.

From another angle one can compare different selection criteria. Information on isolated criteria
is useful; information that allows one to compare two selection criteria is even more useful. The
results presented in this article—and by other researchers as well—seem to indicate that the number
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of faults detected by one strategy is too weak a criterion. The conjecture is that this may be one
reason why there are no compelling studies that would show the superiority of one criterion over
another. Instead, the kind of faults should matter as well.

More concretely, the work presented in this article is on random+ testing, a combination of
random with limit testing (and it is not completely evident whether the results generalize to vanilla
random testing). Random+ tests are appealing because they are comparably easy and cheap to
generate. They are particularly attractive for Eiffel programs because of the built-in oracle that
is provided by the contracts. Random testing, by its very nature, is subject to random influences.
Intuitively, choosing different seeds for different generation runs should lead to different results
in terms of the detected defects. Earlier studies had given initial evidence for this intuition. In the
first part of the work presented in this article, a systematic study on the predictability of random
tests is presented. Somewhat surprisingly it seems that this question has not been studied before.

In sum, the main predictability results are the following. Random testing is predictable in terms
of the relative number of defects detected over time. Yet, different runs of the tool reveal different
faults. The present article explained the threats to validity of a generalization of these results. An
analytical approach to deriving these results may also be possible and will be investigated in future
work.

The second question concerns the nature of faults that random+ testing finds. Moreover, it
is interesting to consider whether and how these differ from faults found by human testers and
by users of the software. The experiments presented in this article then suggest that the three
mentioned strategies for finding software faults have different strengths and applicability. None
of them subsumes any other in terms of performance. Random+ testing with AutoTest has the
advantage of being completely automatic. Humans, however, find faults that AutoTest misses.
This is shown both by the examined user bug reports and by asking testers to test some code
on which AutoTest was run, and by subsequently comparing the results. This last experiment
also proved that AutoTest finds faults that testers miss. The conclusion is that random+ tests
should be used alongside with manual tests. Given the earlier results on comparing different
QA strategies, this is not surprising, but it seems that there are no other systematic studies
that showed this for random testing. Threats to generalizing these results are discussed in
Section 4.4.

The comparative analysis is based on a classification of faults that is not specific to one particular
application domain. For specification faults, it covers typical problems with pre and postconditions
and invariants that are too weak, for example by not taking extreme values into account, or too
strong. For implementation faults, it covers a few general problems such as missing cases or
infinite loops, and others that relate to the specifics of Eiffel. It is not possible to assert that the
classification is complete or the only possible one; it is the result of analyzing the faults that
were encountered. It is likely that this classification, or some variant of it, can be used for future
experiments on comparing strategies for finding faults.

The results of research into randomly testing Eiffel programs can also be used for investigating
the benefits of using contracts [18] and how to improve contracts, possibly based on specification
patterns. Future work in this direction will require performing more experiments of the kind
presented in this article, adjusting the classification, and comparing concrete testing strategies, such
as partition-based testing, or usage-profile-based testing, rather than the admittedly underspecified
‘manual testing strategy.’

The experiments also revealed one phenomenon that cannot be explained yet. If, for any class, the
first 3min chunk of all 30 experiments are taken and subsequently collated, results are considerably
better than when taking the median of all 90min runs for that class. This seems to suggest that
short tests perform better than long tests, but because of frequent resets of the pool of objects used
as inputs, this cannot be deduced.

Explaining this phenomenon is the focus of future efforts. A systematic study on the effectiveness
of short vs long test runs is a further project and so is the repetition of the experiments with other
classes and for longer periods of time. The definition of metrics for test cases that not only take
into account the length of a test case, but also the complexity of the generated objects is also to
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be considered. Findings in this area could lead to conclusions as to whether random testing is
‘only’ good at finding defects with a comparably simple structure, or if more complex defects can
be detected as well. A related avenue of exciting research is concerned with the influence of a
software system’s coupling and cohesion on the effectiveness and efficiency of random tests.
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