
SOFTWARE TESTING, VERIFICATIONANDRELIABILITY
Softw. Test. Verif. Reliab. 2011; 21:55–71
Published online 3 March 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.427

Model-based quality assurance of protocol documentation: tools
and methodology

Wolfgang Grieskamp1,∗,†, Nicolas Kicillof1, Keith Stobie1 and Victor Braberman2

1Microsoft Corporation, Redmond, WA, U.S.A.
2University of Buenos Aires, Buenos Aires, Argentina

SUMMARY

Microsoft is producing interoperability documentation for Windows client–server and server–server proto-
cols. The Protocol Engineering Team in the Windows organization is responsible for verifying the
documentation to ensure that it is of the highest quality. Various test-driven methods are being applied
including, when appropriate, a model-based approach. This paper describes core aspects of the quality
assurance process and tools that were put in place, and specifically focuses on model-based testing (MBT).
Experience so far confirms that MBT works and that it scales, provided it is accompanied by sound tool
support and clear methodological guidance. Copyright 2010 John Wiley & Sons, Ltd.

Received 30 September 2008; Revised 2 December 2009; Accepted 28 December 2009

KEY WORDS: quality assurance process; test-driven; model-based; protocols; Spec Explorer

1. INTRODUCTION

Protocol documentation is an important part of Microsoft’s compliance obligations with the US
Justice Department and the European Union. Microsoft is committed to producing high-quality
documentation [1] for certain Windows client–server and server–server protocols. These docu-
ments enable third parties to interoperate with Microsoft’s client and server operating systems.
The Protocol Engineering Team in the Windows organization acts as a major stakeholder inside of
Microsoft in the quality assurance process for this documentation. More than 25 000 pages of docu-
mentation for over 250 protocols have to be thoroughly verified to ensure that they are accurate,
so that developers can implement protocols from the information they contain plus basic domain
knowledge. This significant effort requires the application of innovative methods and tools. The
team has devised a methodology called the Protocol Documentation Quality Assurance Process
(PQAP), with model-based testing (MBT) as one of its cornerstones. MBT has a decade-long tradi-
tion inside of Microsoft. The first tools supporting it were deployed at the end of the 1990s. Various
MBT tools exist today in the company, including the product family calledSpecExplorer [2–4],which
was originally developed at Microsoft Research, and today is productized as part of this effort.

This paper gives an overview of the PQAP and its supporting tools. Though MBT has been
applied successfully to features and products before [2, 5], this is the first attempt to use it in
such a large scale and in the context of a business-critical area within Microsoft, and to the best

∗Correspondence to: Wolfgang Grieskamp, Microsoft Corporation, Redmond, WA, U.S.A.
†E-mail: wrwg@microsoft.com

Contract/grant sponsor: CONICET; contract/grant numbers: PAE-PICT-2007-02278 (PAE 37279), PIP 112-200801-
00955, UBACyT X021

Copyright 2010 John Wiley & Sons, Ltd.

56 W. GRIESKAMP ET AL.

of the authors’ knowledge throughout the whole industry. Experience so far confirms that MBT
works and that it scales, provided it is accompanied by good tool support and clear methodological
guidance, and backed up by investment in training.

2. OVERVIEW OF THE PROCESS

The basic idea behind the process presented in this paper is test-driven analysis of the docu-
ments. Deriving a functional test suite from protocol documentation ensures that it is thoroughly
studied and that its normative statements are converted into assertions to be checked against the
actual implementation. This formalization process naturally also validates internal consistency. It
is furthermore close to the actual task of writing an implementation from the document, simulating
a potential implementer’s attempts.

All test-suite development in this effort is performed by vendors in India and China. Employing
vendors has a significant methodological dimension, since it establishes a clean-room environment
that excludes interference of knowledge Microsoft employees may have about protocol imple-
mentations. Employing the large number of vendors required for the task also poses significant
challenges for the management and control of the test-suite development work itself. This was one
of the major design drivers for the PQAP.

This section provides an outline of the PQAP. Later sections drill down on some of its particular
aspects, in particular those related to MBT.

2.1. Phases of the PQAP

The PQAP is phase-oriented, guiding the development of a test suite for a given protocol from a
Technical Document (TD) through all the required steps. Its phases are described in Figure 1.

Every phase is followed by a formal review. A disposition of Conditional Accept or Re-review
by reviewers requires the test-suite development team to (partially) reiterate the phase and submit
a new review request.

The progress and results of the PQAP are reflected in the PQAR (Protocol Quality Assurance
Report), a single document to report on all phases of the process. Test-suite developers fill in the
PQAR incrementally. It is used as a basis for the reviews, and it constitutes the major artefact
documenting the test suite. The PQAR is a template-based document with a fixed structure and a
number of accompanying guidance documents for the various steps, stages and phases.

2.2. Requirements specification

While the PQAR is a central document to the process, the Requirements Specification (RS) is
equally important.

Final phase
Generate tests Deploy test suite Execute and capture

Design phase
Create model Implement adapters

Plan phase
Classify requirements Plan model Suggest architecture

Study phase
Read TD Elicit Requirements Suggest Approach

Figure 1. Phases of the PQAP.

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

MODEL-BASED QUALITY ASSURANCE 57

Figure 2. A sample requirements specification.

Figure 2 shows an example of anRS. This document is a table derived by test-suite authors from the
protocol documentation containing one entry for each explicit or implicit normative statement, which
defines a unique identifier for the requirement to be referenced from other artefacts in the process.
Requirement gathering does not require previous domain knowledge and is not specific to protocol
documentation. It consists in identifying statements in a document that can be proven right or wrong.

The RS specifies a description (usually a verbatim statement from the TD, sometimes slightly
modified to include context information) and other properties used to classify the requirement.
The most relevant ones are the protocol endpoint (Scope) associated with the requirement (usually
Client or Server), whether it is normative (Informative/Normative), and which approach is taken
to validate it (Verification).

The Verification column in the RS is used to express several (mutually exclusive) verifica-
tion decisions through keywords. It is left blank for informative requirements. For a normative
requirement, gatherers have to ask themselves whether the requirement can be tested. Requirement

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

58 W. GRIESKAMP ET AL.

testability is based on the fact that test suites produced focus on interoperability and hence only
aim at controlling or observing behaviour over the wire (at the protocol transport level). In addition
to such requirements, protocol documentation also contains guidance for the implementation of
endpoints that cannot be externally observable, which is considered Non-testable for the purposes
of the PQAP. If a requirement is testable, testers may choose for a variety of reasons not to
actually test it, and consequently mark it as Unverified, although this needs to be done sparsely
to keep the overall requirement coverage percentage within acceptable limits (e.g. over 80% for
most protocols). Finally, if a requirement is testable and will be verified, the decision has to be
made to test it in a Test Case (either manually written or generated from a model) or in a test
Adapter. Typically, behaviour or data that depends on previous history is validated in a test case
(e.g. ‘packet A follows packet B’, or ‘field F contains the value previously written by packet C’).
Requirements pertaining to data format are validated in an adapter (e.g. ‘the contents of field F
must be of type T’).

Test suites usually play the role of one endpoint in order to test another one. For example, a
client test suite is used to test a server implementation as a system under test (SUT).

Test plans given in the PQAR refer to the RS; so do models and test suites; and also test
logs generated during test execution. This allows tracking back from test-execution results to the
technical documentation via the requirements. Requirement coverage is also the main measurement
of the completeness of a test suite.

2.3. Testing approach

Test approach definition starts in the study phase and is refined and finished in the plan phase. It
covers two major aspects: how to harness the SUT, and which approach is used to define test cases.

2.3.1. Harnessing approach. One of two general approaches is usually applied to harness a
protocol for testing. In the first approach, one protocol endpoint is completely replaced by a
synthetic implementation, consisting of the test suite and adapters, which drives and monitors the
tested endpoint. Typically, the tested endpoint is a protocol server, but it can be also a protocol
client. This approach is depicted in Figure 3.

In a second approach, an existing component or application is used to generate protocol traffic,
monitored and validated using a network monitor, as shown in Figure 4.

Both approaches use test adapters (described in Section 3) to abstract the access to the SUT
and harness for the actual test cases. Both approaches may require, in addition to the operations
provided by the tested protocol, some additional control of the tested endpoint, shown in both
figures as ‘Control’.

The preferred approach is to completely replace an endpoint for testing, since driving an existing
application introduces additional challenges. First, the monitor might not be able to interpret
encrypted traffic on the protocol transport. Second, an existing application may not produce all
behaviours required to achieve suitable test coverage. However, engineering a synthetic testing

Tester Endpoint SUT

Adapters

Test Suite

Transport

Tested Endpoint

Control
(optional)

Transport

Figure 3. Replacing one endpoint.

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

MODEL-BASED QUALITY ASSURANCE 59

Tester Endpoint SUT

Adapters

Test Suite

Transport

Tested Endpoint

Control
(optional)

TransportApplication

Monitor

Figure 4. Driving an existing application.

endpoint is overly complex or even not possible at all for some protocols, in which case testers
fall back to the approach in Figure 4.

Note that the chosen approach for harnessing does not affect the one used for test case authoring:
both harnessing approaches can be used for model-based as well as traditional testing.

2.3.2. Test case authoring approach. The PQAP does not prescribe whether to use traditional
(manually coded) or MBT for defining test cases. Rather, test-suite developers are asked to submit
a suggestion for the approach after the study phase, to be considered by reviewers.

It is rather common to apply a hybrid approach, where MBT is used to develop the main test
suite, but some special scenarios are tested by manually written tests. The hybrid approach is
supported by a unique test adapter that can be used both from models and from traditional test
suites. Test adapters are defined in the managed Protocol Test Framework (PTF), an extension to
Visual Studio Test Tools, and are discussed in more detail in the next section.

3. TEST REPRESENTATION AND TEST ADAPTERS

One of the major problems for developing test suites for protocols is to get protocol elements on
the wire and back. Elements can be data packets in various encodings, remote procedure or web
service calls, and so on. The problem is well known in the protocol testing community, resulting
in efforts like TTCN-3 [6].

For this project, an extension to Visual Studio Test Tools (VSTT) has been developed, called PTF,
based on the Visual Studio Unit Testing framework and .Net. Using a mainstream programming
system constitutes an advantage, since it allows leveraging a high-level programming environment
and IDE, a language well known to test engineers working in the project (C#), and access to the
variety of features provided by the .Net framework, Microsoft’s major platform for interoperable
code. The Unit Testing framework, in addition, provides a concise way to represent test cases and
to manage their execution under VSTT.

PTF adds to VSTT custom support for dealing with protocols, including ways to automatically
serialize and de-serialize data packages based on declarative definitions in .Net types and attributes,
and access to RPC calls directly from .Net. In the rare cases where necessary, Visual Studio’s
C++/CLI subsystem, which allows mixed managed/native development, is used to deal with
issues such as access to the Windows API or other low-level system layers. In general, the usage of
C/C++ in adapter and test code is discouraged; as languages like C# are considered to generate
simpler and more robust test suites.

Test adapters are a central concept of PTF. A test adapter defines an interface to the protocol
under test or its harness at a problem-oriented level of abstraction. It is given as a managed (C#)
interface that contains methods for sending data to the server, and events for receiving data back.

Figure 5 depicts the role of test adapters in the process. Test adapter interfaces are developed
and used independent of their implementation. At deployment time, test adapter implementations

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

60 W. GRIESKAMP ET AL.

Figure 5. Test adapters.

are associated with adapter interfaces, supporting different implementations with the same logical
functionality for different protocol transports and/or operating systems.

Like any interface in component-oriented design, an adapter interface is a grouping of related
methods following the usual principles of high cohesion and low coupling. The PQAP includes
guidelines to design adapter interfaces. For instance, the level of abstraction for adapter interfaces
should be potentially useful both for a model and a traditional testing approach. Test validation
steps usually happen in the actual test cases, but some checks can also be performed by the adapter.
The general guideline is that protocol behaviour should not be encoded in the test adapter, whereas
state-independent data invariants on protocol elements can well be validated there.

Test adapters are thus specifically designed for each protocol so that they provide to test cases
a high-level interface, abstracting away details about data encoding and formatting. Packet fields
or parameters that are only relevant to message-local data format validations, such as buffer sizes
or encryption flags are typically hidden from the test cases (or model) and resolved at the adapter
level for communication in both directions.

An interesting example of data abstraction by a test adapter is the Abstract Identifier pattern,
defined as part of the PQAP. The pattern is applied to information coming from the SUT that
cannot be determined at modelling or test case coding time, such as identifiers or encryption keys.
The pattern guides testers to maintain a table mapping concrete values for these data points to
abstract (integer) values that are used for the communication with the test cases. A test case (or
model) will thus expect the identifier for the first session it establishes to be simply 0, while the
second session will be 1. The adapter will add an entry to the table when the first concrete identifier
is received from the SUT mapping it to value 0. From then on, a 0 received from a test case for
a session identifier parameter will be sent over the wire as the actual identifier, and this session
identifier will be sent to the test case as 0 whenever it is received from the SUT.

Test adapters can be implemented in diverse ways in PTF. It is possible to wrap an existing API
or program, or to synthesize packets and directly parse them from the wire. The last approach is
supported by the Protocol Adapter Compiler (PAC), a tool that comes with PTF, which extracts
definitions of protocol elements directly from the protocol document, and generates data structures
ready to be consumed by the PTF. Protocol element serializers and de-serializers can be thus
directly generated from the TD with a minimal amount of human intervention.

4. MODEL-BASED TEST-SUITE DEVELOPMENT

MBT has been discussed extensively in academic and industrial communities. For a comprehensive
text book see e.g. [7]. The general workflow of how MBT is applied as part of the PQAP is
shown in Figure 6.

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

MODEL-BASED QUALITY ASSURANCE 61

Doc

Define Messages
Basic validation and automatic adapter

Model Behavior
State machines and extended validation

Create Adapters

Analyze Behavior
Visualization and model checking

Generate Test Cases

Run Tests

Figure 6. MBT in the PQAP.

Dotted lines represent feedback about the document, in the form of TDIs (Technical Document
Issues— documentation bugs). As seen in Figure 6, TDIs are generated in most steps. Over
10 000 TDIs have been found as a result of applying the PQAP, of which more than 8000 have
been resolved as fixed so far (acknowledged as documentation issues and corrected). Typically,
more than 50% of the TDIs in the project are actually detected before any test is ever executed,
confirming community wisdom that the value of MBT is not only in the testing itself but in the
mere development of the model.

In the context of the project for which the PQAP was developed, any discrepancy detected
between the actual implementation and the documentation is considered an error in the latter,
which must conform to the shipped version of the product. Nothing prevents the same process to be
applied in a setting where the documents are considered a ‘golden’ specification and conformance
failures are thus treated as product bugs that need to be fixed.

In fact, model authoring usually requires test-suite developers to not only consider the SUT’s
expected behaviour (oracle), but also forces them to think in generic (parametric) terms what the
tester endpoint (SUT environment) may generate as valid stimuli for the SUT. Traditional test
cases, although also useful in practice, do not necessarily push the envelope of that kind of analysis,
which is especially rewarding in terms of detecting issues in the documentation.

The use of MBT is strongly recommended when protocol behaviour is history dependent. History
dependency may either come from modalities of allowed actions or from heavy data dependencies
of actions from the current SUT data state. In all those cases, models tend to closely mimic TD
statements about protocol endpoints. The technical document usually describes a protocol action
as a set of conditions under which the action is enabled in terms of an abstract data state model,
plus a change (update) of this state when the action happens. This (informal) pre/post-condition
description maps directly to the modelling style used in the project.

4.1. Spec Explorer

The MBT tool used in the project is Spec Explorer. It has been developed as the third incarnation
in a series of MBT tools [3, 4]. Its conception and foundation has been described in previous
papers [2, 4, 8]. An introduction to its application in the protocol documentation domain has been
given in a preliminary version of this paper [9]. Here, that introduction is expanded by providing
details and samples to illustrate each of the phases in the methodology.

Spec Explorer is a modelling and MBT environment originally developed at Microsoft Research
to overcome some of the obstacles that prevent a broader adoption of these techniques in the
software development lifecycle. It is fully integrated into the development environment of Visual
Studio, supporting multiple notations (programs, diagrams) and modelling styles (state machines,
scenarios), with an emphasis on the capability to combine those different behavioural descriptions

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

62 W. GRIESKAMP ET AL.

using model composition. It is internally based on the framework of action machines [6], which
allows for uniform encoding of models stemming from a variety of notations.

4.2. Model programs

The core notation used in Spec Explorer for state-oriented modelling derives from Abstract State
Machines (ASM) [10]. Models are described in a programmatic style by guarded-update rules on
a global data state. The resulting artefacts are called model programs. Rules describe transitions
between data states and are labelled with actions corresponding to method invocations on a test
adapter or on the actual SUT. Rules can be parameterized (and their arguments then also appear
in the associated action labels).

Model programs have similarities with extended finite state machines (EFSM) in the way they
are written, but there are substantial conceptual differences. First, the machine defined by a model
program is usually not finite, as the state can consist of complex data elements such as collections,
objects that can be dynamically created, etc. The slicing of an infinite state space into a finite
subset for the purpose of state exploration and test generation is therefore a central aspect of MBT
with Spec Explorer, discussed in Section 4.2.1. Second, inputs and outputs are distinguished in
state transition labels, where multiple outputs can be enabled in one state allowing for specification
and/or implementation non-determinism, the semantic framework for test conformance is not
based on finite state machine test theory, but on transition systems and alternating simulation [11].
Detailed discussions of Spec Explorer’s notion of conformance can be found in the literature [3, 8].

4.2.1. Example model program: chat room server. As an example for demonstrating modelling
in Spec Explorer, a chat room server is used. This simple example has sufficient complexity to
illustrate the usage of rich (infinite) model state and alternating simulation as a conformance notion.

The chat room server allows users to log on, log off and post messages to be broadcasted to
all users in a session. Message broadcasting has to obey certain basic ordering constraints: the
messages posted by one user must arrive in the order they have been emitted; however, messages
posted by different users may arrive in any order.

The state of the chat room server is defined in the following C# fragment:

enum UserState
{

WaitingForLogon,LoggedOn, WaitingForLogoff
}
class User
{
internal UserState state;
private} MapContainer < int, SequenceContainer<string>> waitingForDelivery;

internal bool HasPendingDeliveryFrom(int senderId) {
return waitingForDelivery.ContainsKey(senderId);

}
internal bool HasPendingDeliveryFrom(int senderId, string message) {
return HasPendingDeliveryFrom(senderId) &&

waitingForDelivery[senderId].Contains(message);
}
internal string FirstPendingMessageFrom(int senderId) {
return waitingForDelivery[senderId][0];

}
internal void AddLastMessageFrom(int senderId, string message) {
if (!HasPendingDeliveryFrom(senderId))
waitingForDelivery[senderId] = new Sequence<string>();

waitingForDelivery[senderId].Add(message);
}
internal void ConsumeFirstMessageFrom(int senderId) {
if (waitingForDelivery[senderId].Count == 1)
waitingForDelivery.Remove(senderId);

else

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

MODEL-BASED QUALITY ASSURANCE 63

waitingForDelivery[senderId].RemoveAt(0);
}

}
static MapContainer<int, User> users = new MapContainer<int,User>();

The static variable users describe the entire state of the model. It is a mapping (dictionary) from
user identifiers to objects representing user state. Each user object consists of a value indicating
the user’s current status, plus a queue of messages that have been posted to the user but have not
yet been delivered. This queue is again a mapping from identifiers of senders who have posted
messages for the given user to an ordered sequence of message contents for each sender. This
representation allows for two levels of non-determinism. On the one hand, the user who will
next receive a broadcast message in the users mapping is not fixed. On the other hand, the
sender who will be selected for the given user in the waiting For Delivery mapping can
also vary.

The listing below shows guarded-update rules for two actions of the system. The first action
stands for posting a message to the room. This is an input stimulus to the SUT. The second one
represents receiving a message. This is an output response from the SUT. At the model program
level, this difference is not relevant, as rules just state when these actions are enabled and what
will be their effect on model state.

[Rule]
static void BroadcastRequest(int userId, string message)
{
// enabling condition
User user = GetLoggedOnUser(userId);
// update
foreach (User loggedOnUser in users.Values)
loggedOnUser.AddLastMessageFrom(userId, message);

}
}
[Rule]
static void BroadcastAck(int userId, int senderId, string message)
{
// enabling condition
User user = GetLoggedOnUser(userId);
Condition.IsTrue(user.HasPendingDeliveryFrom(senderId));
Condition.IsTrue(user.FirstPendingMessageFrom(senderId) == message);
Requirement.Capture(5, ‘Messages from one sender MUST be received in order’);
// update
user.ConsumeFirstMessageFrom(senderId);
if (EveryoneReceived(senderId, message))
Requirements.Capture(7, ‘All logged-on users MUST receive a broadcast’);

}
static User GetLoggedOnUser(int userId)
{
Condition.IsTrue(users.ContainsKey(userId));
User user = users[userId];
Condition.IsTrue(user.state == UserState.LoggedOn);
return user;

}
static bool EveryoneReceived(int senderId, string message)
{
return !users.Exists(u => u.Value.state == UserState.LoggedOn &&
u.Value.HasPendingDeliveryFrom(senderId, message));

}

The enabling condition of an action is declared in the C# statement Condition.IsTrue,
which calls a particular modelling library. In contrast to earlier versions of Spec Explorer based on
an extension of the C# language called Spec# [3], all the infrastructure for modelling is provided
in the current version by libraries; no language extensions are required. Condition.IsTrue
statements can appear anywhere in the body of an update rule and even in helper methods (e.g.
helper method GetLoggedOnUser). If the Boolean condition passed as an argument is false in

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

64 W. GRIESKAMP ET AL.

the current state, then the model execution path containing the call is cut off, and any state updates
performed until that point are forgotten.

In this example, posting a message (BroadcastRequest) is only enabled for logged-on
users, and causes the message to be distributed to the queues of all users registered in the room.
Receiving a message (BroadcastAck) is also only enabled for logged-on users, and for the
first queued messages associated with the given sender. If these conditions are met, the message
is consumed from the queue.

The model captures two requirements in the rule for action BroadcastAck. Requirement 5
(‘Messages from one sender MUST be received in order’) is declared to be captured by fulfilling
the enabling conditions of the rule, which restrict the implementation to acknowledge the reception
of the first message received from one sender before other messages from the same source are
consumed. Requirement 7 (‘All logged-on users MUST receive a broadcast’) is considered to
have been captured only when the last receiver has consumed the message. Both validations rely
on the model behaviour imposed by the rule for action BroadcastRequest. Validation of
requirement 5 is based on the fact that messages are added at the end of the queue. Capturing
requirement 7 leverages the knowledge that each message is added to all logged on users.

Note that the above model program is unbounded in various respects.

• First the message parameter to a post is not fixed to a finite domain. (Note that, given a
number of users logged on to the system, all other parameters of the update rules are fixed
indirectly by the conditions that relate them to model state: user identifiers can only be drawn
from the domain of the global user mapping or the delivery map of an individual user, as
ensured by the enabling condition through a ContainsKey call).

• Second, there is no bound on how often a user can post messages and when these posted
messages are actually received.

So themodel program state is obviously infinite. The next sectionwill describe how this is dealt with.

4.3. Slicing

Slicing of unbounded model state is a central activity when using Spec Explorer. Even for a
bounded finite model state, slicing is a way to extract manageable subsets from an otherwise huge
and intractable finite state space.

Slicing relies on the assumption that, from a testing perspective, a user can make the explicit
decision to prune away some of the potential stimuli (inputs) accepted by the SUT. This does not
alter the correctness of test results; it just produces fewer tests. In contrast, a user should never
prune away responses (outputs) as this may result in tests that fail after slicing, although they
would have passed in the unsliced full model. Henceforth, (proper) slicing is a human intervention
that may impact test coverage and completeness, but not correctness.

Mastering the ‘art’ of slicing is the key to mastering state explosion and making MBT practical.
Several Spec Explorer features support the user in this activity. They are intended to be applied
not as part of the model program itself—which is supposed to represent the pure contract of
the behaviour and shall remain unmodified— but from the outside, using a configuration and
coordination scripting language to augment the model program. This language, called Cord, has
been first described by Grieskamp and Kicillof [12].

Cord allows configuring a model program for slicing and test generation in the following
basic ways:

• Parameter selection and combination: allows assigning parameter domains to actions,
including domains derived from the dynamic model state; as well as defining combinatorial
goals like pairwise and n-way interactions.

• State predicate filtering: allows setting bounds on states by pruning state space exploration
from states that do not satisfy a Boolean predicate defined on the state variables.

• Trace-pattern filtering: allows restricting the model graph to traces matching a certain pattern,
where the pattern is given in a regular-expression style, which may be mixed with control-
flow-dependent state predicates.

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

MODEL-BASED QUALITY ASSURANCE 65

• Coverage-based reduction: when applied to an already finite model graph, allows restricting it
to a smaller sub-graph that still guarantees certain model coverage criteria. A typical criterion
is requirement coverage, where capturing of requirements by individual actions is declared
in the model program as seen in the example.

The main principle followed by practitioners (besides never pruning away output responses)
when creating slices together with their models is to maintain a basic separation of concerns between
expected system behaviour and test purposes. A model has to be correct in itself (no spurious states
or transitions) representing all potential protocol behaviours, and only those, independent of slices.
Modellers cannot assume that themodelwill be used only in combinationwith the provided scenarios,
as other users may want to define different scenarios for checking or testing different properties.

Two mechanisms prevent modellers from accidentally slicing away requirements that their model
was supposed to capture. A static check is enforced when applying coverage-based reduction in
combination with other forms of slicing. The user must specify the requirements that should be
captured either by identifier or by count. The reduction algorithm will check that the requirement
coverage goal is achievable by comparing the set (or count) provided by the user with those
reachable in the exploration graph. Amore general dynamic check is applied by a coverage reporting
tool that collects information from logs after running the test suites against an implementation.
This tool compares the set of requirements contained in execution logs with those declared in the
Requirements Specification and outputs a human-readable report with enumerations, counts and
percentages of requirements verified versus those extracted from the documentation.

Among these techniques, a closer look will be taken, in the context of the chat room server
example, at trace patterns, which turn out to be the most widely used mechanism in current practice.

4.3.1. Example trace pattern: chat room server. As discussed earlier, the state space of the chat
room server model program is unbounded, as it allows both arbitrary values for the message
parameter and an arbitrary number of broadcasts. Using a trace pattern and composing this with
the actual model program, a finite set of traces can be extracted.

This can be done in Spec Explorer’s Cord language, for example, as follows:

machine BroadcastSlice() : Actions {
LogonSequence; BroadcastRequest(_, "a"); BroadcastRequest(_, "b");
BroadcastAck*

||
ModelProgram

}

The above machine composes a trace pattern with the actual model program using the parallel
composition operator ||, which forces both of its operands to synchronize in lockstep (the transitions
possible in the composition are those and only those that can be performed by both operands).
The trace pattern consists of a logon sequence (described in another machine, including logging
on two users to the system), followed by two broadcast requests, and then by an arbitrary number
of broadcast acknowledgments. Note that parameter values in the trace pattern are only partially
fixed, as is the control flow, allowing any possibilities determined by the model program in the
composition result.

Figure 7 shows an excerpt of the graph generated by Spec Explorer for machine Broadcast
Slice. The snapshot corresponds to the case where the same user broadcasts two messages, which
results in a strict ordering. Requirement capture can be seen in transition labels (e.g. ‘Captured:
ms-chat R5’). The part of the graph not shown covers the case where different users broadcast,
and the number of possible orderings is therefore higher. Spec Explorer shows states as nodes
with two different shapes. Ellipses stand for input states (states in which a test case would send
a stimulus to the SUT). Diamonds are output states (states in which a test case would expect a
response from the SUT).

Note that, according to Spec Explorer’s notion of test conformance based on alternating simu-
lation, output responses of the SUT are buffered; henceforth it is possible to first issue a number
of stimuli and then analyse their responses.

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

66 W. GRIESKAMP ET AL.

Figure 7. Excerpt from the state exploration graph of sliced Chat.

Application of trace patterns go beyond extraction of finite behaviours for testing. In general,
slices are also used for model analysis. With a well-defined slice, a user can visually validate
whether the model presents the expected behaviour. Slices can also be used for model-checking.
To that end, a user can define a trace-pattern ending in an unwanted state, and check whether
the resulting composition with the model program is non-empty, in which case the graph of that
composition represents the counter examples [13]. Cord’s trace-pattern syntax supports this by
allowing Boolean conditions on state variables mixed into the patterns.

4.4. Test generation and execution

Spec Explorer supports both on-the-fly testing, where model exploration is fused with testing, and
generation of test code that can run standalone, independent of the model. In the protocol document
testing context, only the test code generation feature is used, since it allows for systematic and
explicit engineering of test suites and does not depend on random exploration strategies.

Generated test suites are represented by default in the VSTT Unit Testing format, but the code
generation infrastructure can easily be reconfigured to target other test frameworks via provided
extension points.

Before test-suite code can be generated, test selection strategies must be applied in the form of
traversals on the exploration graph. The most widely used strategy is transition coverage. In Spec
Explorer, traversals are transformations on the model graph. They result in a new graph that fulfils
the coverage goal of the test selection strategy and is in Test Normal Form: every state has at most
one stimulus outgoing transition. This means that all testing choices (which stimulus to provide
to the system at each point) have been made before test-execution time. System choices, on the
other hand, are preserved by traversals, as they represent potential non-determinism on the part of
the tested system. Test code generated for a graph containing such a choice will accept any of the
potential system responses at that point, and proceed accordingly.

This principle is illustrated in Figure 8, which contains the graph for one of the test cases
generated from the sliced model in Figure 7, using All-Transitions as a coverage criterion. For
this test case, the algorithm has made the testing choices resulting in user 1 broadcasting both
messages. Other test cases cover the case where user 2 broadcasts both messages and those where

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

MODEL-BASED QUALITY ASSURANCE 67

Figure 8. Test case generated from the sliced chat.

each user broadcasts one message in both possible orders. The traversal algorithm has however
left system choices intact (in states S40, S44, S45, S49 and S57). The resulting generated code
will consequently accept all valid system responses in these states.

For systems with unfair non-determinism (some non-deterministic paths might never be chosen
by specific implementations), and models for which no ‘winning strategy’ (meaning covering any
transition is possible independent of choices made by the SUT) exists, test generation as it is
currently performed may result in test suites missing possible coverage. The solution for this issue
is subject of ongoing work, and needs to be treated by moving the traversal computation for these
particular systems to test-execution instead of test generation time.

4.5. Requirement tracing

Tracing requirements gathered from an informal specification all the way to test-run reports is
an integral aspect of the PQAP. Spec Explorer supports declaratively associating requirements to
enabling conditions and updates by calling specific library methods in C# code. Requirements
covered in each step (and in the path leading to each state) are recorded as part of exploration
results and transferred to generated test code. At test-run time, dynamic requirement capturing is
logged and output as part of test reports. In addition, PTF provides direct mechanisms for adapter
and traditional test code to explicitly log the requirements they cover. These combined features
provide requirement coverage information all along the process, an essential feedback to determine
the correctness of slicing, to analyse exploration and model checking results, to debug individual
test case execution and to interpret global test-suite verdicts.

4.6. Adoption

When the protocol documentation QA effort was started, the biggest concern for rolling out a MBT
approach in this context was whether this technology could be effectively adopted by lay people
or was just confined to formal methods experts. Currently, almost all of the Windows protocols
to be tested were done by vendors performing the test development. This has built confidence,

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

68 W. GRIESKAMP ET AL.

empirically established, that the MBT approach works and that it is more productive than traditional
testing. This evidence is backed by the fact that, in addition to MBT, traditional testing techniques
are being applied to some documents in the same domain with the same people.

The key factors for adoption seem to be providing systematic training for new hires, and a
fairly self-supporting critical-mass community growing at vendor sites. As an example, the vendor
team in China hired many professionals with limited testing experience directly out of college;
after attending a three-day ramp up training, the majority became capable of modelling simple
protocols; and after three months of working in teams with experienced colleagues, they were able
to smoothly model complex protocols themselves. The biggest challenge for adoption appears to
be in the paradigm shift, not actually in mastering the complexity of the modelling problem and
tools. This results in inexperienced people performing relatively better during ramp up than those
bringing in mature patterns and practices from other paradigms as baggage. Thus, the experience
indicates a steep but not a very high learning curve.

5. EFFORT MEASUREMENTS AND COMPARISON

Table I shows the time spent performing several tasks in the protocol documentation testing
project, in terms of the total requirements identified in the documents. The sample includes all 105
documents tested in one of the testing sites, as a way to eliminate any potential bias introduced
by differences in effort recording and distribution of work between sites.

Statistical analysis indicates that the number of requirements is a good predictor for the effort,
with significant correlation coefficients at the 0.01 level with respect to other indicators, such as
number of pages in a document (0.867), testable requirements (0.881), requirements covered in
test cases (0.690), requirements covered in adapter (0.410), number of modelled test cases (0.485)
and number of traditional test cases (0.216).

Preliminary analyses show a significant advantage when comparing test suites that were devel-
oped using MBT with the remaining test suites (Figure 9). The average effort per tested requirement
for test suites where MBT was applied was 1.39 person-days, whereas testing each requirement in
test suites not applying MBT took in average 2.37 person-days. (Note the difference between total
requirements used in Table I and tested requirements used for the effort comparison. Requirements
not related to the behaviour of the tested endpoint were collected but not tested in the project.)
That resulted in a 42% productivity gain from the usage of MBT at the test site also listed in
Table I, with a similar number of requirements tested with each approach (9844 requirements in
test suites using MBT; 8728 requirements in non-MBT test suites).

While the comparison between approaches yields a lower performance improvement (34%) for
the other site, the team in that location has applied MBT in most of their test suites, resulting in
a much less balanced distribution of requirement coverage. Only 2411 out of 15 892 were tested
in test suites not using MBT, which renders the comparison for this site less significant.

Notice that the effort strictly invested in model authoring according to Table I is relatively
low compared with the overall efficiency gain from applying MBT. This is due to the fact that
modelling has an impact on all phases of the process, not just on model creation. Also, the table

Table I. Effort per total requirement.

Task Average person-days per requirement

Technical document review 0.13563
Requirement gathering 0.10444
Model authoring 0.05803
Traditional test coding 0.06760
Adapter development 0.15014
Test case execution 0.07469
Final adjustments 0.04429

Total test-suite development 0.635409

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

MODEL-BASED QUALITY ASSURANCE 69

0

50

100

Site 1 Site 2

58
66

100 100

Model-Based

Traditional

Figure 9. Effort reduction using MBT.

measures the effort in terms of total requirements (as an early estimate of future phases), while
the comparisons above are in terms of tested requirements, a magnitude known only after a test
suite is concluded.

6. RELATED WORK

To the authors’ knowledge, there is no comparable project in industry or Academia applying
MBT in a comparable scale and with a scope similar to those of the project described here. The
closest is a project conducted by ISPRAS for the testing of the Linux operating system, using the
UniTESK toolset [14]. In that project, besides other activities, POSIX standards are translated into
models to generate conformance tests for different Linux versions. However, the goal is mostly
API testing, rather than network protocol testing. Moreover, the model and test-suite development
is not part of an industrial scale process. From the same group also comes work for deriving formal
specifications from standards [15], applying a process for gathering requirements from an English
document similar to the PQAP’s. However, this work does not yet apply a full tool chain down to
MBT from these requirements.

On the tools level, material about Spec Explorer has been published and compared with other
work before. A summary is provided here, but the reader is referred to previous articles [2–4, 8]
for a more detailed comparison. Spec Explorer is often classified as finite state machine testing,
though there are only some commonalities: notably its guarded-update machines are similar to
those found in EFSM notations, and that similar traversal techniques for the final step are applied
in both domains. The approach is actually closer to labelled transition systems (LTS) based
testing and IOCO [15], except that Spec Explorer uses alternating simulation with buffering as the
conformance notion. Alternating simulation has been introduced by Alur et al. [11], and is used
in other tools [17]. Its use for Spec Explorer has been described in several papers [3, 8]. As of
today, Spec Explorer seems still to be the only MBT tool that uses alternating simulation together
with output response buffering as the underlying conformance notion. In the authors’ opinion this
has advantages over IOCO, as it does not require input completeness of the implementation and
therefore treats model and implementation symmetrically.

Methodologically, the usage of trace patterns for slicing, as has been proposed for Spec Explorer
first by Grieskamp and Kicillof [12] (at that point in time, trace patterns were simply called
scenarios), has proven to be essential for the success of the MBT approach in the context of the
PQAP. The approach by itself is not new, and has been employed in tools such as TorX [18], TGV
[19] and others before. However, these tools have special languages for defining test purposes
that are applied to the test generation algorithm. Spec Explorer supports trace patterns not as a
special-purpose language, but just as another modelling notation. The application of a trace pattern
to a model program is therefore treated as a general model composition problem. Consequently,
trace patterns can be used for model checking or independent exploration as well.

Spec Explorer uses symbolic state space exploration techniques and constraint solving, based on
the XRT software model checker [20] to deal with partial models (such as trace patterns), model

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

70 W. GRIESKAMP ET AL.

programs with unfixed parameter domains and their composition. Symbolic execution in software
model checkers for testing has been proposed for Java Pathfinder [21], however, the authors are
not aware of any MBT tools stemming from this conceptual work. Conformiq Qtronic [22] is a
commercial MBT tool that uses symbolic execution, although it does so for on-the-fly testing and
not for slicing.

7. CONCLUSION

This paper presents the quality assurance process for protocol documentation established at
Microsoft. It uses novel methodologies and techniques in various dimensions: a test-driven approach
applied in general to the protocol documentation, a detailed methodology for applying this approach
in a large-scale vendor context and the employment of advanced testing technology such as MBT
with Spec Explorer. It contributes to Microsoft’s intention to deliver high-quality documentation
to the community, which enables third parties to create interoperable server products.

There are numerous instances of MBT being successfully used in the industry, but to the authors’
knowledge, none has the scale of the one presented here. The magnitude of the current effort is
expected to help MBT become main-stream in the software industry. The feasibility and scalability
of MBT is evident in the fact that the project has delivered ‘model to metal’ test suites for over
75 protocols, and this number is growing. At the end of the project, around half of the 250 protocols
in scope will have been modelled, reflecting an investment of over 50 person-years in MBT
application alone. In addition a substantial investment has been made in tool development, based
on a continuous feedback loop from the test-suite development process into the Spec Explorer
development team. According to a preliminary statistical analysis, the application of MBT resulted
in a 42% productivity gain when compared with traditional test suites in a site where similar
numbers of requirements have been verified with each approach.

An aspect to note of this success story is that the application of MBT in the PAQP is confined to
medium-sized systems. Protocols can be considered to be, based on their complexity, somewhere
between embedded systems and general software systems. Typically, model programs developed
in this project consist of up to 1000 lines of C# code (while many are significantly smaller) with a
dozen or more slices. From the first prototype to successfully running MBT tests, test-suite teams
require around 1 to 2 person-months. Slicing is essential even for these medium-sized systems,
as the state space is too large for exhaustive test generation. With the aid of slicing, there is no
technical reason why MBT should not scale to larger systems.

Ramping up engineers without a background in formal methods to do MBT has worked well
in the context of the PQAP. The experience indicates that while ramping is steep because of new
and unfamiliar concepts, the final skills necessary to master the technology are not particularly
challenging. They may in fact be much more moderate than professional software engineering
requires, indicating that MBT can become a mainstream technology in testing.

ACKNOWLEDGEMENTS

This work would not have been possible without the tireless efforts of the Protocol Engineering Team, in
Redmond, Hyderabad, and Beijing, and with process and reviewing assistance from Robert V. Binder and
MVerify. Thanks also go to colleagues at Microsoft Research who contributed to create the Spec Explorer
technology: Colin Campbell, Yuri Gurevich, Lev Nachmanson, Wolfram Schulte, Nikolai Tillmann and
Margus Veanes. The authors would like to particularly thank The Technical Committee and especially
Harry Saal, as well as the EU Monitoring Trustee Neil Barrett and his staff, who have evaluated and
influenced this work. Victor Braberman’s research is supported by CONICET, PAE-PICT-2007-02278
(PAE 37279), PIP 112-200801-00955, and UBACyT X021.

REFERENCES

1. Microsoft. MSDN protocol documentation. Available at: http://msdn.microsoft.com/en-us/library/cc216514.aspx
[9 February 2010].

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

MODEL-BASED QUALITY ASSURANCE 71

2. Grieskamp W. Multi-Paradigmatic Model-Based Testing (Lecture Notes in Computer Science, vol. 4262). Springer:
Berlin, 2006. Invited talk in Klaus Havelund and Manuel Nunez and Grigore Rosu and Burkhart Wolff, FATES/RV.

3. Campbell C, Grieskamp W, Nachmanson L, Schulte W, Tillmann N, Veanes M. Model-Based Testing of Object-
Oriented Reactive Systems with Spec Explorer (Lecture Notes in Computer Science, vol. 4949). Springer: Berlin,
2008; 39–76. Formal Methods and Testing, 2008.

4. Grieskamp W, Gurevich Y, Schulte W, Veanes M. Generating finite state machines from abstract state machines.
Proceedings of ISSTA’02 (Software Engineering Notes, vol. 27). ACM: New York, 2002; 112–122.

5. Stobie K. Model based testing in practice at microsoft. Proceedings of the Workshop on Model Based Testing
(MBT 2004) (Electronic Notes in Theoretical Computer Science, vol. 111). Elsevier: Amsterdam, 2004.

6. Willcock C, Deiss T, Tobies S, Keil S, Engler F, Schulz S. An Introduction to TTCN-3. Wiley: New York, 2005.
7. Utting M, Legeard B. Practical Model-Based Testing. Morgan-Kaufmann: Los Altos, CA, 2007.
8. Grieskamp W, Kicillof N, Tillmann N. Action machines: A framework for encoding and composing partial

behaviors. International Journal of Software Engineering and Knowledge Engineering 2006; 16(5):705–726.
9. Grieskamp W, MacDonald D, Kicillof N, Nandan A, Stobie K, Wurden F. Model-based quality assurance of

windows protocol documentation. Proceedings of the 1st IEEE International Conference on Software Testing
(ICST 2008), Lillihammer, Norway, April 2008.

10. Gurevich Y. Evolving Algebras 1993: Lipari Guide. Specification and Validation Methods, Boerger E (ed.).
Oxford University Press: Oxford, 1995.

11. Alur R, Henzinger TA, Kupferman O, Vardi MY. Alternating refinement relations. Proceedings of the Ninth
International Conference on Concurrency Theory (CONCUR) (Lecture Notes in Computer Science, vol. 1466).
Springer: Berlin, 1998.

12. Grieskamp W, Kicillof N. A schema language for coordinating construction and composition of partial behaviors.
Proceedings of the 28th International Conference on Software Engineering & Co-Located Workshops—5th
International Workshop on Scenarios and State Machines. ACM: New York, May 2006.

13. Dwyer MB, Avrunin GS, Corbett JC. Patterns in property specifications for finite-state verification. Proceedings
of the 21st International Conference on Software Engineering (ICSE’99). IEEE Press: Los Angeles, U.S.A.,
1999; 411–420.

14. Linux verification center at IPSRAS. Available at: http://www.linuxtesting.org [9 February 2010].
15. Grinevich A, Khoroshilov A, Kuliamin V, Markovtsev D, Petrenko A, Rubanov V. Formal methods in industrial

software standards enforcement. Proceedings of PSI’2006 (Lecture Notes in Computer Science, vol. 4378),
Virbitskaite I, Voronkov A (eds.). Springer: Berlin, 456–466.

16. Tretmans J. Test generation with inputs, outputs and repetitive quiescence. Software, Concepts and Tools 1996;
17(3):103–120.

17. Jacky J, Veanes M, Campbell C, Schulte W. Model-Based Software Testing and Analysis with C#. Cambridge
University Press: Cambridge, 2008.

18. Tretmans J, Brinksma E. TorX: Automated model based testing. 1st European Conference on Model Driven
Software Engineering, Nuremberg, Germany, December 2003; 31–43.

19. Fernandez J, Jard C, Jeron T, Viho C. An experiment in automatic generation of test suites for protocols
with verification technology. Science of Computer Programming—Special Issue on COST247, Verification and
Validation Methods for Formal Descriptions 1997; 29(1–2):123–146.

20. Grieskamp W, Tillmann N, Schulte W. XRT—Exploring Runtime for .NET—Architecture and Applications. SoftMC
2005: Workshop on Software Model Checking (Electronic Notes in Theoretical Computer Science). Springer: Berlin,
July 2005.

21. Khurshid S, Pasareanu CS, Visser W. Generalized symbolic execution for model checking and testing. Proceedings
of the 9th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03), Warsaw, Poland, April 2003; 553–568.

22. Huima A. Implementing Conformiq Qtronic. Testing of Software and Communicating Systems (TestCom/FATES
2007). (Lecture Notes in Computer Science, vol. 4581). Springer: Berlin, 2007.

Copyright 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2011; 21:55–71
DOI: 10.1002/stvr

