Linearization and Review of Stability

ME584
Fall 2010
Lecture Objectives and Activities

• Review of stability
• Importance of linearization
• Linearization of nonlinear systems
 – Pair-share problems
A stable system is a system with a bounded response to a bounded input. Response to a displacement/initial condition will produce either a decreasing, neutral, or increasing response.
Stability Analysis – 1st Order ODE

1st - Order: $a_1 \frac{dx}{dt} + a_0 x = b_0 u$

Characteristic equation:

$$a_1 \lambda + a_0 = 0 \Rightarrow \lambda = -a_0 / a_1$$

System is stable if $\lambda < 0$, unstable if $\lambda > 0$

Example: $6\dot{x} + 2x = 2u$; $u = 0, x_0 = 1$

Characteristic equation: $6\lambda + 2 = 0 \Rightarrow \lambda = -3$

$x = x_o e^{-t/3}$

Example: $6\dot{x} - 2x = 2u$; $u = 0, x_0 = 1$

Characteristic equation: $6\lambda - 2 = 0 \Rightarrow \lambda = 3$

$x = x_o e^{t/3}$
Stability Analysis – 2nd Order ODE

\[2^{\text{nd}} - \text{Order} : a_2 \frac{d^2 x}{dt^2} + a_1 \frac{dx}{dt} + a_0 x = b_0 u \]

Characterisitic Equation:

\[\frac{1}{\omega_n^2} = \frac{a_2}{a_o}, \quad \frac{2\zeta}{\omega_n} = \frac{a_1}{a_o} \]

\[\lambda^2 + 2\zeta\omega_n \lambda + \omega_n^2 = 0 \]

\[\lambda_{1,2} = -\zeta\omega_n \pm j\omega_n \sqrt{1-\zeta^2} \]

System is unstable if \(\lambda_1 \) and/or \(\lambda_2 > 0 \)

Stable response

\(\zeta < 1 \): Underdamped (Oscillation)

\(\zeta > 1 \): Overdamped (No oscilliation)

\(\zeta = 1 \): Critically damped (No oscilliation)

Relative stability: degree of stability

\[\begin{align*}
 & (a) \quad R(s) = \frac{b}{s^2 + ax + b} \\
 & (b) \quad R(s) = \frac{9}{s^2 + 9s + 9} \\
 & (c) \quad R(s) = \frac{9}{s^2 + 2s + 9} \\
 & (d) \quad R(s) = \frac{9}{s^2 + 6s + 9} \\
 & (e) \quad R(s) = \frac{9}{s^2 + 9s + 9}
\end{align*} \]
Stability Analysis – State Space (SS)

State space format

\[
\dot{x} = Ax
\]

Let \(x = ke^{\lambda t} \), substitute

\[
\lambda ke^{\lambda t} = Ake^{\lambda t} \quad \text{or} \quad \lambda x = Ax
\]

\((\lambda I - A)x = 0\)

Non – trivial solution if

\[
\det(\lambda I - A) = 0
\]
Stability Analysis with SS - Example

\[
\frac{dx}{dt} = \begin{bmatrix} -\alpha & -\beta & 0 \\ \beta & -\gamma & 0 \\ \alpha & \gamma & 0 \end{bmatrix} x + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}.
\]

The characteristic equation is then

\[
\det(\lambda \mathbf{I} - \mathbf{A}) = \det\left\{ \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} - \begin{bmatrix} -\alpha & -\beta & 0 \\ \beta & -\gamma & 0 \\ \alpha & \gamma & 0 \end{bmatrix} \right\}
\]

\[
= \det\begin{bmatrix} \lambda + \alpha & \beta & 0 \\ -\beta & \lambda + \gamma & 0 \\ -\alpha & -\gamma & \lambda \end{bmatrix}
\]

\[
= \lambda[(\lambda + \alpha)(\lambda + \gamma) + \beta^2]
\]

system is stable when \(\alpha + \gamma > 0\) and \(\alpha \gamma + \beta^2 > 0\).
Importance of linearization

- Dynamics Analysis
- Control and estimation systems design
 Importance of linearization

• Is nature linear or nonlinear? physical systems?
 – Many physical systems behave linearly within some range of variable, but become nonlinear as variables increase without limit
 – Possible to linearize nonlinear systems

• Example: Pendulum

\[m\ddot{\theta} + K\dot{\theta} + \frac{mg \sin(\theta)}{L} = \tau \]

 For small \(\theta \), \(\sin(\theta) = \theta \)

\[m\ddot{\theta} + K\dot{\theta} + (mg / L)\theta = \tau \]

• Tractable analysis with linear model
Importance of linearization

• Is this system stable? $m\ddot{\theta} + K\dot{\theta} + (mg/\ell)\theta = \tau$

• State space model:

 \[\begin{aligned}
 & x = \text{state variables} \quad x = [\theta \ \dot{\theta}] \\
 & \dot{x} = Ax + Bu \\
 \end{aligned} \]

 where \(A = \begin{bmatrix} 0 & 1 \\ -g/\ell & -K/m \end{bmatrix} \); \(B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \); \(u = \tau \)

• Control

 \[u = -Gx \]

 Where \(G \) is the control matrix,

 \[\dot{x} = Ax + Bu = Ax + B(-Gx) = (A - BG)x \]

 Choose \(G \) to achieve desired performance

• Estimation

 \[u = -\hat{G}\hat{x} \]

 where \(\hat{x} \) is estimate of \(x \)
Linear Approximation

\[\dot{x} = \frac{dx}{dt} = f(x, u) \]

\[x = \bar{x} + x^* \]

\[u = \bar{u} + u^* \]

\(\bar{x} \): equilibrium value of \(x \) about which linearization is taken
also called (steady state value/nominal value)

\(\bar{u} \): equilibrium value of \(u \) about which linearization is taken

\(x^* \): small perturbation or variation of \(x \)

\(u^* \): small perturbation or variation of \(u \)

To solve for \(\bar{x} \) and \(\bar{u} \),
set \(f(\bar{x}, \bar{u}) = 0 \)

\(\bar{x} \) and \(\bar{u} \) can also be provided from testing
Taylor’s Expansion

\[\frac{dx}{dt} = 0 + \frac{dx^*}{dt} = f(\bar{x}, \bar{u}) + \left. \frac{\partial f}{\partial x} \right|_{x=\bar{x}, u=\bar{u}} x^* + \left. \frac{\partial f}{\partial u} \right|_{x=\bar{x}, u=\bar{u}} u^* + H.O.T. \]

\[\frac{dx^*}{dt} \approx Ax^* + Bu^* \]

where

\[A = \left. \frac{\partial f}{\partial x} \right|_{x=\bar{x}, u=\bar{u}} \quad \text{and} \quad B = \left. \frac{\partial f}{\partial u} \right|_{x=\bar{x}, u=\bar{u}} \]

A and B are called Jacobian matrices.
Step 1.
If \(\bar{x} \) and \(\bar{u} \) are not specified, set \(\dot{x} = 0 \) to solve for \(\bar{x} \) and \(\bar{u} \).
Define \(x_1, x_2, \ldots, x_n \) and \(u_1, u_2, \ldots, u_m \), and form \(f_1, f_2, \ldots, f_n \).

Step 2.
Solve for \(A \) and \(B \). Assume \(A \) is \((n \times n)\) and \(B \) is \((n \times m)\)

\[
A = \left. \frac{\partial f}{\partial x} \right|_{x=\bar{x}, \ u=\bar{u}} = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix}
\]

and

\[
B = \left. \frac{\partial f}{\partial u} \right|_{x=\bar{x}, \ u=\bar{u}} = \begin{bmatrix}
\frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} & \cdots & \frac{\partial f_1}{\partial u_m} \\
\frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} & \cdots & \frac{\partial f_2}{\partial u_m} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial u_1} & \frac{\partial f_n}{\partial u_2} & \cdots & \frac{\partial f_n}{\partial u_m}
\end{bmatrix}
\]

Step 3.
Form \(\frac{dx^*}{dt} \approx Ax^* + Bu^* \)
Example

\[m\ddot{\theta} + K\dot{\theta} + \frac{mg\sin(\theta)}{L} = 0 \]

let \(x_1 = \theta, \ x_2 = \dot{\theta}, \ u = 0 \) (no control input)

\[f = \begin{cases} f_1 \\ f_2 \end{cases} = \begin{cases} \dot{x}_1 \\ \dot{x}_2 \end{cases} = \begin{cases} x_2 \\ -\frac{k}{m}x_2 - \frac{g}{L}\sin x_1 \end{cases} \]
Step 1

Set $\dot{x} = \begin{cases} \dot{x}_1 \\ \dot{x}_2 \end{cases} = 0,$

$\dot{x}_1 = x_2 = 0 \Rightarrow \bar{x}_2 = 0$

$\dot{x}_2 = \frac{-k}{m} \bar{x}_2 - \frac{g}{L} \sin \bar{x}_1 = 0$

$\Rightarrow \bar{x}_1 = 0, \pi, 2\pi$

For this example, let us consider $\bar{x}_1 = 0$

$\bar{x} = \begin{cases} \bar{x}_1 \\ \bar{x}_2 \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$
Step 2

\[A = \left. \frac{\partial f}{\partial x} \right|_{x=x, u=u} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \bigg|_{\bar{x}, \bar{u}} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} \bigg|_{\bar{x}, \bar{u}} & \frac{\partial f_2}{\partial x_2} \bigg|_{\bar{x}, \bar{u}} \end{bmatrix} \]

\[\frac{\partial f_1}{\partial x_1} \bigg|_{\bar{x}, \bar{u}} = \frac{\partial}{\partial x_1} (x_2) \bigg|_{\bar{x}, \bar{u}} = 0 \]

\[\frac{\partial f_1}{\partial x_2} \bigg|_{\bar{x}, \bar{u}} = \frac{\partial}{\partial x_2} (x_2) \bigg|_{\bar{x}, \bar{u}} = 1 \]

\[\frac{\partial f_2}{\partial x_1} \bigg|_{\bar{x}, \bar{u}} = \frac{\partial}{\partial x_1} \left(-\frac{k}{m} x_2 - \frac{g}{L} \sin x_1 \right) \bigg|_{\bar{x}, \bar{u}} = -\frac{g}{L} \cos x_1 \bigg|_{\bar{x}_1=0} = -\frac{g}{L} \]

\[\frac{\partial f_2}{\partial x_2} \bigg|_{\bar{x}, \bar{u}} = \frac{\partial}{\partial x_2} \left(-\frac{k}{m} x_2 - \frac{g}{L} \sin x_1 \right) \bigg|_{\bar{x}, \bar{u}} = -\frac{k}{m} \]

\[\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{k}{m} x_2 - \frac{g}{L} \sin x_1 \end{bmatrix} \]
Step 2 (continued)

\[B = \frac{\partial f}{\partial u} \bigg|_{x=\bar{x}, u=\bar{u}} = 0 \]
Step 3

\[
\frac{dx^*}{dt} = \begin{bmatrix} \dot{x}_1^* \\ \dot{x}_2^* \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{L} & -\frac{k}{m} \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix}
\]

\[
\dot{x}_1^* = x_2^*
\]

\[
\dot{x}_2^* = -\frac{g}{L} x_1^* - \frac{k}{m} x_2^*
\]

The same as \(\ddot{\theta} = -\frac{g}{L} \theta - \frac{k}{m} \dot{\theta} \)
Pair-Share Exercise

Linearize the system about the point where the mass compresses the spring by 1 m and the applied force $u = 0$,

$$m\ddot{x} = u + mg - k_1 x - k_2 x^3$$

where,

$m = 200 \text{ kg}$

$g = 10 \text{ m/s}^2$

$k_1 = 1000 \text{ N/m}$

$k_2 = 1000 \text{ N/m}^3$
Step 1

Let $x_1 = x$ and $x_2 = \dot{x}$

$$f = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \frac{u}{m} + g - \frac{k_1}{m} x_1 - \frac{k_2}{m} x_1^3 \\ x_2 \end{bmatrix}$$

$$\bar{x} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\bar{u} = 0$$
Step 2

\[B = \begin{bmatrix} \frac{\partial^2 f}{\partial u^2} \\ \frac{\partial^2 f}{\partial x \partial u} \end{bmatrix} = \begin{bmatrix} 0.005 \end{bmatrix} \]

\[A = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial u} & \frac{\partial^2 f}{\partial x_2 \partial u} \\ \frac{\partial x_1}{\partial u} & \frac{\partial x_2}{\partial u} \end{bmatrix} = \begin{bmatrix} \frac{k_1}{m} - \frac{3k_2}{x_1} & 0 \\ 0 & 20 \end{bmatrix} \]
Step 3

\[
\dot{x}^* = \begin{bmatrix} 0 & 1 \\ -20 & 0 \end{bmatrix} x^* + \begin{bmatrix} 0 \\ .005 \end{bmatrix} u^*
\]
A simple robot arm is modeled as

\[I\ddot{\theta} = T - mgL\cos\theta \]

where \(I \) is moment of inertia of arm, \(m \) is the mass, and \(T \) is the torque that the motor supplies.

We want the motor to hold the arm at five angles:

\[\theta_e = 0^\circ, 45^\circ, 90^\circ, 135^\circ, 180^\circ, 225^\circ \]

Find the torque required and determine what will happen if something hits the arm and slightly alters its position?
Step 1

Let \(x_1 = \theta, \ x_2 = \dot{\theta}, \ u = T \)

\[
f = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} u - \frac{mgL \cos x_1}{I} \\ x_2 \end{bmatrix}
\]

\[
\bar{x} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} \theta_e \\ 0 \end{bmatrix}
\]

To find the torque \(\bar{u} \) at \(\bar{x} \), set \(x = \bar{x} \) and \(\dot{x}_1 = 0 \) and \(\dot{x}_2 = 0 \)

\[
\bar{u} = mgL \cos x_1
\]

\[
\bar{x}_1 = 0^\circ, \quad \bar{u} = mgL
\]

\[
\bar{x}_1 = 45^\circ, \quad \bar{u} = 0.707mgL
\]

\[
\bar{x}_1 = 90^\circ, \quad \bar{u} = 0
\]

\[
\bar{x}_1 = 135^\circ, \quad \bar{u} = -0.707mgL
\]

\[
\bar{x}_1 = 225^\circ, \quad \bar{u} = -0.707mgL
\]
Step 2

\[
A = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} |_{\bar{x}, \bar{u}} & \frac{\partial f_1}{\partial x_2} |_{\bar{x}, \bar{u}} \\
\frac{\partial f_2}{\partial x_1} |_{\bar{x}, \bar{u}} & \frac{\partial f_2}{\partial x_2} |_{\bar{x}, \bar{u}}
\end{bmatrix}
= \begin{bmatrix}
0 & 1 \\
\frac{mgL}{I} \sin \bar{x}_1 & 0
\end{bmatrix}
\]

\[
B = \left[\frac{\partial f_1}{\partial u} |_{\bar{x}, \bar{u}} \frac{\partial f_2}{\partial u} |_{\bar{x}, \bar{u}}\right] = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]
Step 3

\[
\dot{x}^* = \begin{bmatrix} \dot{x}_1^* \\ \dot{x}_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{mgL \sin \bar{x}_1}{I} \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u^*
\]

\[
\dot{x}_2^* = \frac{mgL}{I} (\sin \bar{x}_1) x_1^* + \frac{u^*}{I}
\]
When Arm is Hit

\[\dot{x}_2^* = \ddot{x}_1^*, \text{so} \]

\[\ddot{x}_1^* - \frac{mgL}{I} (\sin \bar{x}_1) x_1^* = \frac{u^*}{I} \]

Characteristic equation

\[\lambda^2 - \frac{mgL}{I} (\sin \bar{x}_1) = 0 \]

has roots

\[\lambda_{1,2} = \pm \sqrt{\frac{mgL}{I}} \sin \bar{x}_1 \]

For

- \(\bar{x}_1 = 0^\circ, \lambda_{1,2} = 0,0 \) (neutrally stable)
- \(\bar{x}_1 = 45^\circ, \lambda_{1,2} = \pm \sqrt{\frac{.707mgL}{I}} \) (unstable)
- \(\bar{x}_1 = 90^\circ, \lambda_{1,2} = \pm \sqrt{\frac{mgL}{I}} \) (unstable)
- \(\bar{x}_1 = 135^\circ, \lambda_{1,2} = \pm 0,0 \) (neutrally stable)
- \(\bar{x}_1 = 180^\circ, \lambda_{1,2} = \pm j \sqrt{\frac{.707mgL}{I}} \) (undamped / neutrally stable)
- \(\bar{x}_1 = 225^\circ, \lambda_{1,2} = \pm j \sqrt{\frac{.707mgL}{I}} \) (undamped / neutrally stable)
Lecture Recap

• Many nonlinear systems behave linearly with small perturbation

• Linearization procedure
 – Establish equilibrium
 – Solve for A and B

• Analysis is tractable with linear models

• Next lecture: Stability analysis and simulation with Matlab
References

• Palm, W. J., Modeling, Analysis, and Control of Dynamic Systems