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Introduction to the Second Law of Thermodynamics

Introduction

The second law of thermodynamics was developed in the 1850s by a series of physical arguments involving the impossibility of certain cyclical processes.  This physical argument led to the development of the entropy function, which provides a mathematical formulation of the second law.  Over 150 years have passed since the original development of the second law and the definition of entropy.  Nevertheless, the textbook approach to the second law still rests on a series of physical arguments that often tend to confuse students more than help them.  Further, the usual development often obscures the meaning of the final mathematical results that are most important for engineering applications.

These notes present a direct mathematical formulation of the second law.  Thus, results of engineering importance can be seen directly.  The mathematical formulation can be used to develop all the traditional forms of the second law.  This mathematical approach seems more formal and theoretical to the introductory student.  However, this presentation provides students a greater ease with the central concepts for engineering analysis of the second law: entropy and the definition of the most efficient process possible.

Background
The first law of thermodynamics gives an overall law of energy conservation.  Stated simply, the energy of an isolated system remains constant.  For any subsystem, the energy change equals the difference between the heat added and the work done. 

The internal energy of a system depends on the state of the system.  The first law used the changed in internal energy as one term.  For any two given states, however, the first law does not care which state is the initial state and which state is the final state.  It does not even care it if is possible to go from the initial to the final state.  Indeed, we know that certain natural processes only go in one direction.  (E.g. water always flows downhill.  Does it?  How can water flow uphill?)  How would you analyze water flowing uphill using the first law of thermodynamics?)

Consider a specific example---Joule's experiment to measure the "mechanical equivalent of heat."  When this experiment was performed in the 1840’s, most scientists were not aware that heat and work were separate forms of energy.  Heat was measured by defining the unit of heat as the calorie; this definition made the heat capacity of water equal to 1 calorie•gram-1•oC-1.  With this definition, the heat capacity of other substances could be measured relative to the heat capacity of water.  With this arbitrary definition of the calorie, however, no one knew how much energy in conventional terms (e.g. in kg•m2•s-2) equaled one calorie.  This unit conversion factor was called the “mechanical equivalent of heat.”  In today's parlance, we should say that Joule measured the heat capacity of water in units of m2•s-2•kg-1•K-1.

The apparatus that Joule used in shown on the next page. (He actually used several experimental designs, but this apparatus is the most direct one to visualize.)  In this experiment, Joule used an insulated container with paddle wheels; these could be driven by a falling weight.  As the weight fell the mechanical energy added was given by the known work done by the falling weight.  The change in internal energy was equal to the heat capacity of the water times the measured temperature rise.  From the first law (with Q = O because of the insulation) we find that the work equals the change in internal energy i.e.

(U = –Work = -W (z

where W is the weight and (z is the elevation change.  The negative elevation change gives a positive change in internal energy which can be measured by a change in temperature.




Now how would we analyze the problem when the experiment is run in reverse?  That is, how do we analyze the situation when the water cools as the weight rises?

It usually takes students a few seconds to realize that the above question is an absurd one.  Even without a profound knowledge of thermodynamics, you probably realize that a process where water spontaneously cools while a weight rises will not happen.  Why not?  It certainly could be analyzed by the first law.  The system would have a decrease in internal energy while doing external work by lifting the weight.

There are various other process that we can consider like this one where you have an intuitive feeling that the process is unidirectional, but the first law allows an analysis of the process in an impossible direction.  Consider, for example, two solid blocks with equal mass and equal heat capacity, one at 300 K, the other at 500 K.  If the two blocks are placed in contact with no external heat transfer and no work produced, they will attain a final equilibrium temperature of 400 K.  The energy lost by the hot block equals the energy gained by the cold block giving a net conservation of energy.  Why couldn't the hot block get hotter and the cold block get colder?  If we had a final state with one block at 600 K and the other block at 200 K we would still have energy conservation, but again we intuitively know that this is an impossible process.

So far we have described two processes that are easily visualized when they occur in one direction but seem absurd when we ask if they could go in the other direction.  Is there any scientific principle that we could use to generalize this result?  The answer is yes; it's the second law of thermodynamics, and the consequences of that law have significant applications in engineering problem solving.

An Aside on the Laws of Nature

Laws of nature are concepts of humans that generalize their experience in a scientifically useful way.  The progress of science goes from observation to formulation of broad principles that generalize observations.  The broad principles are found by induction and the results deduced from those principles must always be correct or else it will be necessary to modify or discard the “law of nature.”  Usually the scientific law or principle will be expressed in a mathematical form so quantitative conclusions can be drawn.

When students are introduced to a scientific principle for the first time there are two options that may be used.  The first is to describe the physical observations and the induction process that leads to the final formulation of the particular principle to be considered.  The other option, the one used here, is to first present the final mathematical result and to show that the physical results one expects can be deduced from the mathematical statement.

Mathematical Statement of the Second Law
The second law of thermodynamics discussed here is applied to simple thermodynamic systems where the state of the system can be determined by the specification of the temperature and the specific volume.  The effects of electromagnetic fields, surfaces and directional strains are presumed absent.  For such systems the second law is stated as follows:

There exists an extensive thermodynamic property called the entropy (with the symbol, S) defined as follows:




dS =  EQ \F(dU + PdV,T)  .

For any process in a system dS ≥  EQ \F(dQ,T)  , and, for an isolated system




(Sisolated system ≥ 0.

That's all there is to the second law!  The temperature in these equations must always be the absolute temperature so that we do not divide by zero.  Let's examine some of the important points in the definition.

First, note that entropy is a property!  (Say that aloud to yourself five times each day.)  That means that we can find the entropy of a system if we know its state.  If the state doesn't change, the entropy doesn't change.  For a system in a cyclical process (initial and final states the same) the change in the entropy of the system is ___________.  (Fill in the blank.)

In these notes we are using Q as the thermodynamic heat transfer with the sign convention that heat added to the system is positive and heat rejected by the system is negative.  Thus the Q in the above equation (and in subsequent equations) can be thought of as Q = Qin – Qout.

We can speak of the specific entropy as the entropy per unit mass.  Note from the definition of entropy that it must have dimensions of energy/temperature.  The units commonly used for specific entropy are J/(kg•K) and Btu/(lbm•R).  Because entropy is a property, we can find it in our usual thermodynamic tables.  As an extensive property, it follows the same relations as specific volume.  That is, in a one-phase region it is necessary to specify temperature and pressure (or any two other properties) to specify the state of the system.  In a one-phase region where temperature and pressure are related the entropy of a liquid-vapor mixture is found from the saturation properties (sf and sfg) and the quality:

s = sf + x sfg
Use your thermodynamic tables to find the specific entropy of water at (a) 200 oC and atmospheric pressure, and (b) at 200 oC and a quality of 50%.

Remember that entropy is a property and we can treat it as we treat other properties.

The definition of entropy uses other thermodynamic properties as dS = (dU + PdV)/T.  For ideal gases we can use the relationships that dU = CvdT and P = mRT/V to get the following equation for the entropy change in an ideal gas

dS = Cv EQ \F(dT,T)  + P EQ \F(dV,T)   =  Cv EQ \F(dT,T)  +  EQ \F(mRT,V) \F(dV,T)   =   Cv EQ \F(dT,T)  + mR  EQ \F(dV,V)  
We can divide by the mass, m, and write this result in terms of specific properties:

ds = cv EQ \F(dT,T)  + R  EQ \F(dv,v)  
Although we will not use this equation in these notes, it is derived here to show that the entropy is defined in terms of other property variables and thus is a property itself.

The most interesting feature of the definition is the inequality that occurs in the relationship between the entropy change of a system and the heat transfer.  Note that the entropy change of a system can be positive, negative or zero.  It must, however, be less than or equal to dQ/T.  (If dS is negative what is the direction of heat flow in the system?)

The reversible process

In the statement of the second law there is a greater than or equal to condition.  The limit in which the equality obtains is called the reversible process.  With this mathematical definition of a reversible process, we see that such a process is characterized by two equations:
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This is a thermodynamic idealization.  We will show below that this idealization is useful in engineering calculations because it defines the most efficient process that we can achieve.
What does it mean to have a reversible process?  One way of describing this ideal process is to say that, in a reversible process, all changes are carried out so that the system and its surroundings could be returned to their initial states.  Furthermore, this can be done with no net change in any other system.  This conclusion follows from the statement that (Sisoalted system = 0 for a reversible process.  An isolated system consists of a given system and its surroundings.  If we can have (Sisoalted system = 0 this means that we can return both the system and its surrounding to their initial states.

This condition is never realized in practice.  It is possible to return an individual system to its initial state by using (i.e. making changes in) some other system.  This does not require a reversible process.  The reversible process requires that no change occur in the system or its surroundings when the system is returned to its initial state.

The reversible process is an idealization that will prove useful in further applications.  This describes the limit to which any real process can be run.  No process can decrease the entropy in an isolated system.  Actual process will be less ideal than the reversible process, but the reversible process will give us the results for the most nearly ideal process we can visualize.

Different levels of reversibility

Note that there are two inequalities in the second law statement.  The first applies to any system (dS ≥ dQ/T).  The second applies to isolated systems.  It is possible to have a process that is reversible for each system but is irreversible overall.

To see this consider the problem of two blocks of equal mass and heat capacity placed in contact at two different temperatures.  Assume that each block has a reversible heat transfer so that dS = dQ/T.  If the two blocks form an isolated system, all the heat from one block must flow into the other.  Thus, if we label the blocks as “A” and “B” we must have dQA= -dQB.  For our isolated system, the total entropy change is the sum of the entropy changes of each block.  (Remember that entropy is an extensive property.)  That is we can write Stotal = SA + SB, where any change in Stotal must be positive because it represents the entropy change of an isolated system.  Thus, we must have:

dStotal =  d(SA + SB) = dSA + dSB =  EQ \F(dQA,TA)   +   EQ \F(dQB,TB)   = dSisloated system  ≥ 0

By our previous equation, dQA  = -dQB , so that 

dStotal =dQA   EQ \B\BC\[(\F(1,TA) - \F(1,TB))    ≥ 0

This equals zero only if dQA = 0 (i.e. if the blocks are placed in “contact” through a wall that is perfectly insulating) or if TB = TA (i.e. if both blocks are at the same temperature.)  If dQA > 0 we must have TB > TA to satisfy the above inequality.  (Remember that we are using absolute temperatures so that all values of T are positive.)  Furthermore, if dQA > 0, the direction of heat flow must be from block B to block A.  (Remember the sign convention for heat.)  So we have one conclusion from the second law: if TB > TA, then heat flows from block B to block A.  See how simple the second law is.  Here we are on page five already and we just proved that heat flows from the hotter to the colder temperature!  Seriously, it is important to note that the second law does provide this agreement with our expectations for the direction of heat flow.  Thus it provides a general principle that is consistent with our everyday observations.  What if we assumed that dQA < 0?  Can you do the analysis to show the conclusions of the second law in this case?

Note that the analysis in the previous paragraph as well as all other inequality analyses in these notes are based on the use of the absolute temperatures which are always positive.

The temperature reservoir

The concept of a temperature reservoir makes discussions of the second law simpler that they would be otherwise.  It is not necessary to the overall development, but it replaces definitions of some average temperature by a single, constant temperature.

For any constant volume body we have dQ = dU = m cvdT.  In this case, dT/dQ = 1/m cv.  For a given heat transfer, dQ, the temperature difference, dT approaches zero as the mass, m, approaches infinity.  This idealization of an infinite mass body which can transfer heat yet have no significant temperature change, dT, is called a temperature reservoir.  For this ideal temperature reservoir we can write the total entropy change, (S as follows:

(S =    EQ \I(,,dS)  =    EQ \I(,,\F(d Q,T))   =   EQ \F(1,T)  \I(,,dQ)  =  EQ \F(Q,T) 
The next-to-last step of bringing T outside the integral sign is possible because of the reservoir idealization that T is constant.

Cyclical devices
Thermodynamic cycles can be used to convert heat to work (engine cycles) or to transfer heat from a lower to a higher temperature (refrigeration cycles).  The notation for describing cyclical devices uses definitions of heat and work, which do not follow the usual sign conventions, but are always regarded as positive terms.  In addition, it is important to differentiate between the heat added to the cyclical device and the heat transfer to or from the source.  A sketch of the two kinds of cycles is shown below.  The heat and work terms shown in absolute value brackets on this diagram are considered positive quantities.  |QH| and |QL| are always the heat transfers associated with the high temperature heat source and the low temperature heat source, respectively.  Note that the direction of the heat transfer to each heat source depends on the type of cycle considered.
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We also want to consider the heat transfer to the heat sources and sinks in terms of the usual thermodynamic sign conventions.  The following summary of the various heat transfer and work terms provides a conversion between the usual sign convention terms and the positive heat and work effects used in cycle analysis:

QH
The heat added to the high temperature heat source in the usual sign convention.

|QH|
Absolute value of high temperature cycle heat transfer.  For an engine cycle, |QH| = –QH; for a refrigeration cycle, |QH| =QH.

QL
Heat added to low temperature heat sink in the usual sign convention.

|QL|
Absolute value of low temperature heat transfer.  For an engine cycle, |QL| = QL; for a refrigeration cycle, |QL| = -QL.
W
= –QH – QL is the thermodynamic work of cyclic device (engine or refrigerator) in the usual sign convention.

|W|  = |QH| – |QL| = Work output of engine cycle.

|W|  = |QH| – |QL| = Work input to a refrigeration cycle.

Remember that the quantities in absolute value signs, |QH|, |QL|, and |W| are always positive. 

The efficiency of an engine cycle, (, is the ratio of the work output to the high temperature heat input,

( =   EQ \F(|W|,|QH|) 
For a refrigeration cycle, we are concerned with the work required to remove a certain amount of neat from a low temperature heat source.  Thus the coefficient of performance, (, for a refrigeration cycle is defined as follows:

( =   EQ \F(|QL|,|W|) 
It is possible for the coefficient of performance for a refrigeration cycle to be greater than one.

Although a variety of cycles and cyclic devices are possible they all have the common feature of repeating the same changes of state.  Over an integral number of cycles, the state of the cyclic device returns to the same initial state.  At this same state, of course, all the properties are the same.

The Carnot cycle
The Carnot cycle is of historical interest because of the role it played in the development of thermodynamics.  Consider a cycle that operates between two (and only two) temperature reservoirs.  For the cycle the total entropy change is zero for an integral number of cycles (initial state and final state the same, thus (S = 0).  For an isolated system consisting of the two reservoirs and the cyclic device, then, the total entropy change is given by

(Sisolated system  =  (Shigh temperature reservoir  +  (Slow temperature reservoir ≥ 0

Because (S = Q/T for the reservoir we can write this inequality as follows (subscript H for high temperature reservoir, subscript L for the low temperature reservoir)

 EQ \F(QH,TH)   +   EQ \F(QL,TL)   ≥  0

Note that the values of QH and QL use here refer to the heat transfers to the reservoirs.  If we are transferring heat from the high temperature reservoir to the cyclical device, the value of QH will be negative.  If we are transferring heat from the low temperature reservoir, the value of QL will be negative.  In either case it is necessary for the other value of Q to be positive in order to satisfy the second law.  Note that the second law already gives a very simple relationship for the heat transfer in a Carnot cycle.  The above discussion on cyclic devices showed that the relationships between the Q's and the |Q|'s, for each cycle has one positive and one negative relationship for each type of cycle.  For the engine cycle QH = -|QH| and QL = |QL|.  For the refrigeration cycle,  QH = |QH| and QL= -|QL|.  We can thus write
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For both cycles, |W| = |QH| - |QL| and we can use this relationship to eliminate one of the |Q|'s.  For the engine cycle we eliminate |QL| to obtain

 EQ \F(|QH| - |W|,TL)   ≥   EQ \F(|QH|,TH) 
Rearranging gives the following inequality for the efficiency,

( =   EQ \F(|W|,|QH|)   (  1 -   EQ \F(TL,TH)   =  (Carnot
This shows that the efficiency of any cycle run between two reservoirs has a maximum limit.  The limiting value is that of the Carnot cycle, the most efficient cycle than can be run between two and only two reservoirs.

Note the important implications of this equation.  If we have a perfectly reversible process, the most nearly ideal process we can imagine, we still have a limit on engine efficiency that is less the 100%.  We also see that the equation for the efficiency of the Carnot cycle follows directly from the application of the second law.

Although the Carnot cycle is a simple cycle to consider, the trend noted in the equation for the Carnot cycle efficiency is an important one.  The cycle efficiency increases either by lowering the lowest temperature or by increasing the highest temperature in the cycle.  What practical limits are there on changing these temperatures for greater efficiency?

We can also use the inequality for the refrigeration cycle and the equation |W| = |QH| - |QL| to obtain an expression for the coefficient of performance in a refrigeration cycle.

 EQ \F(|QL| + |W|,TH)   ≥   EQ \F(|QL|,TL) 
Rearranging gives

( =   EQ \F(|QL|,|W|)   (   EQ \F(TL,TH - TL)   =   (Carnot
Again, we have an inequality that applies to all cycles between two reservoirs showing that there is a maximum value for the coefficient of performance.  We also have an equality that gives the coefficient of performance for the Carnot refrigeration cycle; this is the maximum value.

As in the engine cycle, the general trend implied by the Carnot cycle equation shows up in all cycles; coefficient of performance increases as the value of TL increases or as the difference (TH - TL) decreases.  In other words as the refrigeration process becomes easier it becomes more efficient.

It is also important to notice that we can have  ( > 1.  Consider the temperatures for a typical home refrigerator, say TL = 250 K, TH = 320K.  (Do these seem like reasonable temperatures for a home refrigerator to you?)  What is the value of ( for a Carnot refrigeration cycle with these temperatures?

The equations for the Carnot cycle are useful examples of the relationship between efficiency, coefficient of performance, and temperature.  For the Carnot cycle, the equations for |W|/|QL| and for |QH|/|W| apply to both engine and refrigeration cycles even though only one of these equations gives a figure of merit for a particular cycle.

Second law for arbitrary cycles
The analysis done above for Carnot cycles can be extended to arbitrary cycles by considering the heat transfer to and from the cyclic device to take place with a series of heat sources/sinks.  We can further assume that all these sources/sinks are internally reversible, i.e. dS = dQ / T.  We can define an average temperature, <T>, for a heat transfer process, where the total heat transferred is Q, as follows:
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=   EQ \F(1,Q)  \I(,,\F(dQ,T)) 
With this definition we can write the second law for an isolated system consisting of a series of heat sources and a cyclic device (recalling that (S = 0 for an integral number of cycles in the cyclic device) in terms of these average temperature.  This gives

 EQ \F(QH,<TH>)   +   EQ \F(QL,<TL>)   ≥  0

This equation is similar to the one in the analysis of Carnot cycles.  The difference is that the temperatures in the Carnot cycle analysis represented specified reservoir temperatures whereas the analysis here uses the average temperatures, which are not known.  We do know, however, that <TH>  >  <TL>.

From the form of the above inequality, we see that it is not possible to have a 100% efficient engine cycle.  How do we do this?  First, we note that the value of QH (heat transfer to the upper temperature heat sources) must be negative by our sign convention for heat.  In order to satisfy the inequality, then, with this negative QH, we must have a positive QL.  Thus, the second law tells us that anytime we extract heat from a high temperature source we create a negative entropy change that must be balanced by a positive entropy change somewhere else.  In the case of the engine cycle, this positive entropy change is created in the low temperature reservoir.  But, the fact that we must reject heat to this low temperature reservoir means that we cannot convert all of the high temperature heat to work.  Thus, we conclude that we cannot have a 100% efficient engine cycle.  This conclusion obtains even if all process are completely reversible so that we can use the = part of the ≥ sign in the relationship between dS and dQ/T.

This conclusion is often given as an initial statement of the second law.  It is impossible to construct a device, operating in a cycle, which takes heat from a source and converts it completely to work.

A similar qualitative analysis can be made for refrigeration cycles.  Here QL is negative and the extraction of heat from the low temperature sources creates a negative entropy change that must be balanced by some other positive entropy change in order to satisfy the second law.  The amount of heat added to the high temperature source, |QH|, must be greater than |QL| in order to satisfy the second law inequality |QH| ≥ |QL| (<TH>/<TL>), because the temperature ratio is greater than 1.

The argument that |QH| must be greater than |QL| means that there must be a net work input into the system.  In other words, it takes a work input to run a refrigeration cycle.  This can also be used as a primitive statement of the second law in the following form.  It is impossible to construct a device, operating in a cycle, which has no effect other than the transfer of heat from a low temperature to a high temperature.

These statements that no engine cycle can be 100% efficient and that refrigeration cycles require work input are important statements.  In these notes, we have seen that they follow from the initial statement of the second law in terms of the entropy function.  In a historical approach they would be taken as the primary statements of the second law and the concept of the entropy function would be induced from them.

Lost work
If we compare a reversible process (dS = dQ/T) with an irreversible process (dS > dQ/T) for the same change of state we obtain the following expression:

dS =  EQ \F(dUrev + dWrev,T)  >   EQ \F(dQ,T)    =   EQ \F(dUirrev + dWirrev,T) 
For the same change in state the T's and dU's are the same are we are left with the result that

dWrev > dWirrev
Thus, the maximum work is the work done in a reversible process.  The difference between the reversible (maximum) work and the actual work is called the lost work.  In this presentation we are using the thermodynamic sign convention that work done by a system is positive and work done on a system is negative.  Thus W = Wout – Win.  When we have a work input process (Wout = 0; W = -Win.), the work, W, is negative.  When we compare two negative numbers (e.g., -10 and -20), the maximum is the one with the smallest absolute value.  (In the example, -10 is greater than -20.)  Thus the idea that the maximum work is done in a reversible process can be restated as follows:  for work input, the minimum work (in absolute value) is done in a reversible process.

The basic engineering problem using second law analysis is to find the maximum work (minimum work input or maximum work output) for a given change of state.  The answer relies on the knowledge that the maximum work occurs in a reversible process.  Thus, we need to analyze the reversible process to find the maximum work.  An example of this is shown below.

Water at 1 MPa and 500 C is expanded in a piston/cylinder device to a final pressure of 100 kPa.  What is the maximum work if the process is adiabatic?

Solution:
The first law gives q = (u + w.  For the adiabatic process q = 0 so (u = -w.



At the initial state of 1 MPa and 500 C the steam tables give:





u1= 3124.4 kJ/kg

s1 = 7.7622 kJ/kg-K

In order to find the maximum work we must analyze a reversible process.  For a reversible adiabatic process the entropy change is zero.  We thus have s2 = s1 for this process.

The internal energy at the final state (P2 = 100 kPa (given) and s2 = s1 = 7.7622 kJ/kg-K) is found by interpolation in the steam tables at P = 100 kPa between the tabulated entropy values of 7.6134 and 7.8343 kJ/kg-K.  This gives

u2 = 2582.8  EQ \F(kJ,kg)   +   EQ \F(2658.1  \F(kJ,kg)  - 2582.8 \F(kJ,kg),7.8343 \F(kJ,kg-K) - 7.6134 \F(kJ,kg-K) )  \B\BC\[(7.7622 \F(kJ,kg-K) - 7.6134 \F(kJ,kg-K)) 
u2 = 2633.5 kJ/kg

With this value of u2, we can compute the work from w = -(u = u1 - u2:

w = u1 - u2:  3124.4  EQ \F(kJ,kg)  - 2633.5  EQ \F(kJ,kg) 

w = 490.0  EQ \F(kJ,kg) 
We now know the maximum amount of work that we can obtain from the adiabatic expansion of steam between the initial and final states specified.  Any real process, which will depart from the ideal or reversible process, will produce less work.
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