Pierce College

CSIT 546

Midterm Examination
15 April 2014

Name:_________KEY_________________________________
1. Classical Computer Systems

a. Describe the major components of the CPU in a classical, i.e., von Neumann, machine. (10 points)

 - PC: program counter
 - IR: instruction register
 - MAR: memory address register
 - MBR: memory buffer register
 - I/O AR: I/O address register
 - I/O BR: I/O buffer register
 - PSW: Program Status Word

b. Describe the machine cycle of a von Neumann machine, including the retrieval of the data items. As part of this description, draw the Instruction Cycle State Diagram including Interrupt Processing. (10 points)
2. For each of the following Cache Memory Systems, describe the advantages & disadvantages of the particular system

a. Direct Mapped Cache System
 i. Advantages
 Easy implementation
 Simple circuitry
 Fast operation
 ii. Disadvantages
 Each block maps to only one cache line (inflexible)

b. Associative Mapped Cache System
 i. Advantages
 Blocks map to any cache line
 Less cache misses
 ii. Disadvantages
 Complexity of circuitry
 Longer access time – needs to check all tags

c. Set-Associative Mapped Cache System
 i. Advantages
 Can be used as direct mapped cache or associative mapped cache
 Block can be mapped to any line is a set
 Flexible
 Less cache misses
 ii. Disadvantages
 More complexity of circuitry than simple associative mapped cache
 Somewhat longer access time – needs to check all tags in the set
 Complicated caching algorithm
3. Limiting the discussion to DRAM, i.e., Dynamic RAM, and SRAM, i.e., Static RAM, i.e., cells, which one satisfies which criteria:

 (20 points)

 a. Inexpensive

 DRAM

 i. Why?

 Fewer transistors (1 vs 6)

 b. Compact

 DRAM

 c. Faster

 SRAM

 d. Digital Device

 SRAM

 e. Analog Device

 DRAM

 f. Used to construct Main Memory chips

 DRAM

 g. Used to construct Cache Memory chips

 SRAM
4. Discuss the major differences between SDRAM and DRAM memory.

Dynamic RAM and Synchronous DRAM

(10 points)

DRAM
Asynchronous using system clock & standard bus with wait states

SDRAM
Synchronous using external clock
running at processor-memory bus speed without wait states

Operations performed on blocks of chips in parallel, i.e., simultaneously
5. Current Technology Systems

a. What is the operational difference between a 4-Core chip using Point to Point Interconnect with PCI Express and a System that uses four Processors? (10 points)

The 4-Core chip using Point to Point Interconnect with PCI Express is most useful when used for tightly coupled problems since the Point to Point Interconnect facilitates the fast communication between cores.

A system which consists of four processors connected by a fast bus works best for problems which are essentially independent but require fast simultaneous computation.

b. How does an ARM chip and an Intel chip differ from one another? (10 points)

The ARM chip was designed to be used for embedded systems while the Intel chip was specifically designed to be used as a general processor.