Location	Performance
Internal (e.g. processor registers, main	Access time
memory, cache)	Cycle time
External (e.g. optical disks, magnetic disks,	Transfer rate
tapes)	Physical Type
Capacity	Semiconductor
Number of words	Magnetic
Number of bytes	Optical
Unit of Transfer	Magneto-optical
Word	Physical Characteristics
Block	Volatile/nonvolatile
Access Method	Erasable/nonerasable
Sequential	Organization
Direct	Memory modules
Random	
Associative	

Table 4.1 Key Characteristics of Computer Memory Systems

Table 4.2Elements of Cache Design

Cache Addresses	Write Policy
Logical	Write through
Physical	Write back
Cache Size	Write once
Mapping Function	Line Size
Direct	Number of caches
Associative	Single or two level
Set Associative	Unified or split
Replacement Algorithm	
Least recently used (LRU)	
First in first out (FIFO)	
Least frequently used (LFU)	
Random	

Processor	Туре	Year of Introduction	L1 Cache ^a	L2 cache	L3 Cache
IBM 360/85	Mainframe	1968	16 to 32 kB	_	_
PDP-11/70	Minicomputer	1975	1 kB	_	—
VAX 11/780	Minicomputer	1978	16 kB	—	—
IBM 3033	Mainframe	1978	64 kB	—	—
IBM 3090	Mainframe	1985	128 to 256 kB	—	_
Intel 80486	PC	1989	8 kB	—	—
Pentium	PC	1993	8 kB/8 kB	256 to 512 KB	—
PowerPC 601	PC	1993	32 kB	—	—
PowerPC 620	PC	1996	32 kB/32 kB	—	—
PowerPC G4	PC/server	1999	32 kB/32 kB	256 KB to 1 MB	2 MB
IBM S/390 G4	Mainframe	1997	32 kB	256 KB	2 MB
IBM S/390 G6	Mainframe	1999	256 kB	8 MB	—
Pentium 4	PC/server	2000	8 kB/8 kB	256 KB	—
IBM SP	High-end server/ supercomputer	2000	64 kB/32 kB	8 MB	_
CRAY MTA ^b	Supercomputer	2000	8 kB	2 MB	—
Itanium	PC/server	2001	16 kB/16 kB	96 KB	4 MB
SGI Origin 2001	High-end server	2001	32 kB/32 kB	4 MB	_
Itanium 2	PC/server	2002	32 kB	256 KB	6 MB
IBM POWER5	High-end server	2003	64 kB	1.9 MB	36 MB
CRAY XD-1	Supercomputer	2004	64 kB/64 kB	1MB	_
IBM POWER6	PC/server	2007	64 kB/64 kB	4 MB	32 MB
IBM z10	Mainframe	2008	64 kB/128 kB	3 MB	24-48 MB

 Table 4.3
 Cache Sizes of Some Processors

^a Two values separated by a slash refer to instruction and data caches. ^b Both caches are instruction only; no data caches.

Table 4.4	Intel Cache	Evolution
-----------	-------------	-----------

		Processor on which Feature First
Problem	Solution	Appears
External memory slower than the system bus.	Add external cache using faster memory technology.	386
Increased processor speed results in external bus becoming a bottleneck for cache access.	Move external cache on- chip, operating at the same speed as the processor.	486
Internal cache is rather small, due to limited space on chip	Add external L2 cache using faster technology than main memory	486
Contention occurs when both the Instruction Prefetcher and the Execution Unit simultaneously require access to the cache. In that case, the Prefetcher is stalled while the Execution Unit's data access takes place.	Create separate data and instruction caches.	Pentium
Increased processor speed results in external bus becoming a bottleneck for L2 cache access.	Create separate back-side bus that runs at higher speed than the main (front-side) external bus. The BSB is dedicated to the L2 cache.	Pentium Pro
	Move L2 cache on to the processor chip.	Pentium II
Some applications deal with massive databases and must have rapid access to	Add external L3 cache.	Pentium III
large amounts of data. The on-chip caches are too small.	Move L3 cache on-chip.	Pentium 4

Control Bits		Operating Mode		
CD	NW	Cache Fills Write Throughs Invalida		
0	0	Enabled	Enabled	Enabled
1	0	Disabled	Enabled	Enabled
1	1	Disabled	Disabled	Disabled

Table 4.5 Pentium 4 Cache Operating Modes

Note: CD = 0; NW = 1 is an invalid combination.

Core	Cache Type	Cache Size (kB)	Cache Line Size (words)	Associativity	Location	Write Buffer Size (words)
ARM720T	Unified	8	4	4-way	Logical	8
ARM920T	Split	16/16 D/I	8	64-way	Logical	16
ARM926EJ-S	Split	4-128/4- 128 D/I	8	4-way	Logical	16
ARM1022E	Split	16/16 D/I	8	64-way	Logical	16
ARM1026EJ-S	Split	4-128/4- 128 D/I	8	4-way	Logical	8
Intel StrongARM	Split	16/16 D/I	4	32-way	Logical	32
Intel Xscale	Split	32/32 D/I	8	32-way	Logical	32
ARM1136-JF-S	Split	4-64/4-64 D/I	8	4-way	Physical	32

Table 4.6 ARM Cache Features

	Main Memory Cache	Virtual Memory (paging)	Disk Cache
Typical access time ratios	5 : 1 (main memory vs. cache)	10 ⁶ : 1 (main memory vs. disk)	10 ⁶ : 1(main memory vs. disk)
Memory management system	Implemented by special hardware	Combination of hardware and system software	System software
Typical block or page size size	4 to 128 bytes (cache block)	64 to 4096 bytes (virtual memory page)	64 to 4096 bytes (disk block or page)s
Access of processor to second level	Direct access	Indirect access	Indirect access

Table 4.7 Characteristics of Two-Level Memories

Study	[HUCK83]	[KNUT71]	[PATT82a]		[TANE78]
Language	Pascal	FORTRAN	Pascal	С	SAL
Workload	Scientific	Student	System	System	System
Assign	74	67	45	38	42
Loop	4	3	5	3	4
Call	1	3	15	12	12
IF	20	11	29	43	36
GOTO	2	9	_	3	—
Other	_	7	6	1	6

 Table 4.8 Relative Dynamic Frequency of High-Level Language Operations