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A superscalar implementation of the processor architecture is one in which common 

instructions—integer and floating-point arithmetic, loads, stores, and conditional 

branches—can be initiated simultaneously and executed independently. Such 

implementations raise a number of complex design issues related to the instruction 

pipeline.  

 

Superscalar design arrived on the scene hard on the heels of RISC architecture. 

Although the simplified instruction set architecture of a RISC machine lends itself readily 

to superscalar techniques, the superscalar approach can be used on either a RISC or 

CISC architecture.  

 

Whereas the gestation period for the arrival of commercial RISC machines from the 

beginning of true RISC research with the IBM 801 and the Berkeley RISC I was seven or 

eight years, the first superscalar machines became commercially available within just a 

year or two of the coining of the term superscalar. The superscalar approach has now 

become the standard method for implementing high- performance microprocessors.  

In this chapter, we begin with an overview of the superscalar approach, contrasting it 

with superpipelining. Next, we present the key design issues associated with superscalar 

implementation. Then we look at several important examples of superscalar architecture.  
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The term superscalar, first coined in 1987 [AGER87], refers to a machine that is designed 

to improve the performance of the execution of scalar instructions. In most applications, 

the bulk of the operations are on scalar quantities. Accordingly, the superscalar 

approach represents the next step in the evolution of high-performance general-purpose 

processors.  

The essence of the superscalar approach is the ability to execute instructions 

independently and concurrently in different pipelines. The concept can be further 

exploited by allowing instructions to be executed in an order different from the program 

order.  
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Figure 16.1 compares, in general terms, the scalar and superscalar approaches. In a 

traditional scalar organization, there is a single pipelined functional unit for integer 

operations and one for floating-point operations. Parallelism is achieved by enabling 

multiple instructions to be at different stages of the pipeline at one time. In the 

superscalar organization, there are multiple functional units, each of which is 

implemented as a pipeline. Each individual functional unit provides a degree of 

parallelism by virtue of its pipelined structure. The use of multiple functional units 

enables the processor to execute streams of instructions in parallel, one stream for each 

pipeline. It is the responsibility of the hardware, in conjunction with the compiler, to 

assure that the parallel execution does not violate the intent of the program.  
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An alternative approach to achieving greater performance is referred to as super- 

pipelining, a term first coined in 1988 [JOUP88]. Superpipelining exploits the fact that 

many pipeline stages perform tasks that require less than half a clock cycle. Thus, a 

doubled internal clock speed allows the performance of two tasks in one external clock 

cycle. We have seen one example of this approach with the MIPS R4000.  

Figure 16.2 compares the two approaches. The upper part of the diagram illustrates an 

ordinary pipeline, used as a base for comparison. The base pipeline issues one 

instruction per clock cycle and can perform one pipeline stage per clock cycle. The 

pipeline has four stages: instruction fetch, operation decode, operation execution, and 

result write back. The execution stage is crosshatched for clarity. Note that although 

several instructions are executing concurrently, only one instruction is in its execution 

stage at any one time.  

The next part of the diagram shows a superpipelined implementation that is capable of 

performing two pipeline stages per clock cycle. An alternative way of looking at this is 

that the functions performed in each stage can be split into two non-overlapping parts 

and each can execute in half a clock cycle. A superpipeline implementation that behaves 

in this fashion is said to be of degree 2. Finally, the lowest part of the diagram shows a 

superscalar implementation capable of executing two instances of each stage in parallel. 

Higher-degree superpipeline and super- scalar implementations are of course possible.  

Both the superpipeline and the superscalar implementations depicted in Figure 16.2 have 

the same number of instructions executing at the same time in the steady state. The 

superpipelined processor falls behind the superscalar processor at the start of the 

program and at each branch target.  
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Instruction-level parallelism refers to the degree to which, on average, the instructions of 

a program can be executed in parallel. A combination of compiler-based optimization and 

hardware techniques can be used to maximize instruction-level parallelism. 

 

Fundamental Limitations to Parallelism 

• True data dependency  

• Procedural dependency  

• Resource conflicts 

• Output dependency 

• Antidependency  

 

Slide 8 

The instructions following a branch (taken or not taken) have a procedural dependency 

on the branch and cannot be executed until the branch is executed; this type of 

procedural dependency also affects a scalar pipeline. The consequence for a superscalar 

pipeline is more severe, because a greater magnitude of opportunity is lost with each 

delay.  
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If variable-length instructions are used, then another sort of procedural dependency 

arises. Because the length of any particular instruction is not known, it must be at least 

partially decoded before the following instruction can be fetched. This prevents the 

simultaneous fetching required in a superscalar pipeline. This is one of the reasons that 

superscalar techniques are more readily applicable to a RISC or RISC-like architecture, 

with its fixed instruction length.  

 

A resource conflict is a competition of two or more instructions for the same resource at 

the same time. Examples of resources include memories, caches, buses, register-file 

ports, and functional units (e.g., ALU adder).  

 

In terms of the pipeline, a resource conflict exhibits similar behavior to a data dependency 

(Figure 16.3). There are some differences, however. For one thing, resource conflicts can 

be overcome by duplication of resources, whereas a true data dependency cannot be 

eliminated. Also, when an operation takes a long time to complete, resource conflicts can 

be minimized by pipelining the appropriate functional unit.  
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Instruction-level parallelism exists when instructions in a sequence are independent and 

thus can be executed in parallel by overlapping.  

 

The degree of instruction-level parallelism is determined by the frequency of true data 

dependencies and procedural dependencies in the code. These factors, in turn, are 

dependent on the instruction set architecture and on the application.  

 

Instruction-level parallelism is also determined by what [JOUP89a] refers to as operation 

latency: the time until the result of an instruction is available for use as an operand in a 

subsequent instruction. The latency determines how much of a delay a data or procedural 

dependency will cause.  

 

Machine parallelism is a measure of the ability of the processor to take advantage of 

instruction-level parallelism. Machine parallelism is determined by the number of 

instructions that can be fetched and executed at the same time, i.e., the number of parallel 

pipelines, and by the speed and sophistication of the mechanisms that the processor uses 

to find independent instructions.  

 

Both instruction-level and machine parallelism are important factors in enhancing 

performance. A program may not have enough instruction-level parallelism to take full 

advantage of machine parallelism. The use of a fixed-length instruction set architecture, as 

in a RISC, enhances instruction-level parallelism. On the other hand, limited machine 

parallelism will limit performance no matter what the nature of the program.  
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The term instruction issue refers to the process of initiating instruction execution in the 

processor’s functional units and the term instruction issue policy to refer to the protocol 

used to issue instructions. In general, we can say that instruction issue occurs when the 

instruction moves from the decode stage of the pipeline to the first execute stage of the 

pipeline.  

 

Superscalar Instruction Issue Policies 

 In-Order Issue with In-Order Completion 

 In-Order Issue with Out-Of-Order Completion 

 Out-Of-Order Issue with Out-Of-Order Completion  

 

In essence, the processor is trying to look ahead of the current point of execution to 

locate instructions that can be brought into the pipeline and executed.  

 

Three types of orderings are important in this regard:  

 The order in which instructions are fetched  

 Order in which instructions are executed  

 Order in which instructions update the contents of register and memory locations  

 

The more sophisticated the processor, the less it is bound by a strict relationship 

between these orderings. To optimize utilization of the various pipeline elements, the 

processor will need to alter one or more of these orderings with respect to the ordering 

to be found in a strict sequential execution. The one constraint on the processor is that 

the result must be correct. Thus, the processor must accommodate the various 

dependencies and conflicts discussed earlier.  
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The simplest instruction issue policy is to issue instructions in the exact order that would 

be achieved by sequential execution, i.e., in-order issue, and to write results in that same 

order, i.e., in-order completion. Not even scalar pipelines follow such a simple-minded 

policy. USE this policy as a baseline for comparing more sophisticated approaches.  

 

Figure 16.4a gives an example of this policy. We assume a superscalar pipeline capable 

of fetching and decoding two instructions at a time, having three separate functional 

units, i.e., two integer arithmetic and one floating-point arithmetic functional units, and 

having two instances of the write-back pipeline stage.  
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16.4 (a) 

Constraints on a six-instruction code 

fragment:  

I1 requires two cycles to execute.  

I3 and I4 conflict for the same functional unit.  

I5 depends on the value produced by I4.  

I5 and I6 conflict for a functional unit.  

 

Instructions are fetched two at a time 

and passed to the decode unit. Because 

instructions are fetched in pairs, the next 

two instructions must wait until the pair 

of decode pipeline stages has cleared. 

  

To guarantee in-order completion, when 

there is a conflict for a functional unit or 

when a functional unit requires more 

than one cycle to generate a result, the 

issuing of instructions temporarily stalls.  

In this example, the elapsed time from 

decoding the first instruction to writing 

the last results is eight cycles.  

 

16.4 (a) 

In-order issue & in-order completion 

Constraints on a six-instruction code 

fragment:  

I1 requires two cycles to execute.  

I3 and I4 conflict for the same functional unit.  

I5 depends on the value produced by I4.  

I5 and I6 conflict for a functional unit.  

 

Instructions are fetched two at a time 

and passed to the decode unit. Because 

instructions are fetched in pairs, the next 

two instructions must wait until the pair 

of decode pipeline stages has cleared. 
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16.4 (b) In-Order Issue & Out-of-Order 

Completion 

 

 scalar RISC processors use out-of-order 

completion to improve the performance of 

instructions that require multiple cycles.  

 

 With out-of-order completion, any number of 

instructions may be in the execution stage at 

any one time, up to the maximum degree of 

machine parallelism across all functional units.  

 

 Instruction issuing is stalled by a resource 

conflict, a data dependency, or a procedural 

dependency.  

 

 an output dependency, Write After Write, i.e.,  

[WAW], arises.  

I1: R3  R3 op R5 

I2: R4  R3 + 1 

I3: R3  R5 + 1 

I4: R7  R3 op R4 

 

Instruction I2 cannot execute before instruction 

I1, because it needs the result in register R3 

produced in I1; this is an example of a true data 

dependency, as described in Section 16.1.  

 

Similarly, I4 must wait for I3, because it uses a 

result produced by I3.  

 

What about the relationship between I1 and I3? 

There is no data dependency here, as we have 

defined it. However, if I3 executes to completion 

prior to I1, then the wrong value of the contents 

of R3 will be fetched for the execution of I4. 

Consequently, I3 must complete after I1 to 

produce the correct output values. To ensure 

this, the issuing of the third instruction must be 

stalled if its result might later be overwritten by 

an older instruction that takes longer to 

complete.  

 

Out-of-order completion requires more complex instruction issue logic than in-order completion. In 

addition, it is more difficult to deal with instruction interrupts and exceptions. When an interrupt 

occurs, instruction execution at the current point is suspended, to be resumed later. The processor 

must assure that the resumption takes into account that, at the time of interruption, instructions 

ahead of the instruction that caused the interrupt may already have completed.  
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Out-of-Order Issue & Out-of-Order Completion 

In-Order Issue  processor only decodes instructions up to a dependency or conflict.  
No additional instructions are decoded until the problem is resolved.  Processor can not look 

beyond the point of conflict to instructions independent of those in the pipeline. 

 

Decouple the Decode and Execute stages of the pipeline  Instruction Window Buffer 

Fetch  Decode  Window (repeat until window is full) 

Execute Unit Available  select an instruction such that  

     (1) it needs the available unit, & 

     (2) no conflicts nor dependencies block the instruction 

 Processor has Look-Head Capability: it identifies independent instructions that can be 

provided to the execute units. 

Instructions are issued from the Instruction Window without regard to their original program 

order. 

I1 requires two cycles to execute. I3 and I4 conflict for the same functional unit.  

I5 depends on the value produced by I4. I5 and I6 conflict for a functional unit.  

 

I6 can execute before I5 which saves one cycle from 16.4(b) 

Write After Read [WAR] Dependency 

I1: R3  R3 op R5     I2: R4  R3 + 1    I3: R3  R5 + 1    I4: R7  R3 op R4 

I3 cannot complete execution before I2 has fetched its operands 

Antidepedency == second instruction destroys a value that the first instruction requires. 
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With in-order issue, the processor will only decode instructions up to the point of a 

dependency or conflict. No additional instructions are decoded until the conflict is 

resolved. As a result, the processor cannot look ahead of the point of conflict to 

subsequent instructions that may be independent of those already in the pipeline and 

that may be usefully introduced into the pipeline.  

To allow out-of-order issue, it is necessary to decouple the decode and execute stages of 

the pipeline. This is done with a buffer referred to as an instruction window. With this 

organization, after a processor has finished decoding an instruction, it is placed in the 

instruction window. As long as this buffer is not full, the processor can continue to fetch 

and decode new instructions. When a functional unit becomes available in the execute 

stage, an instruction from the instruction window may be issued to the execute stage. 

Any instruction may be issued, provided that (1) it needs the particular functional unit 

that is available, and (2) no conflicts or dependencies block this instruction. Figure 16.5 

suggests this organization.  

The result of this organization is that the processor has a lookahead capability, allowing 

it to identify independent instructions that can be brought into the execute stage. 

Instructions are issued from the instruction window with little regard for their original 

program order. As before, the only constraint is that the program execution behaves 

correctly.  

Figures 16.4c illustrates this policy. During each of the first three cycles, two instructions 

are fetched into the decode stage. During each cycle, subject to the constraint of the 

buffer size, two instructions move from the decode stage to the instruction window. In 

this example, it is possible to issue instruction I6 ahead of I5 (recall that I5 depends on I4, 

but I6 does not). Thus, one cycle is saved in both the execute and write-back stages, and 

the end-to-end savings, compared with Figure 16.4b, is one cycle.  

The instruction window is depicted in Figure 16.4c to illustrate its role. However, this 

window is not an additional pipeline stage. An instruction being in the window simply 

implies that the processor has sufficient information about that instruction to decide 

when it can be issued.  

The out-of-order issue, out-of-order completion policy is subject to the same constraints 

described earlier. An instruction cannot be issued if it violates a dependency or conflict. 

The difference is that more instructions are available for issuing, reducing the probability 

that a pipeline stage will have to stall. In addition, a new dependency, which we referred 

to earlier as an antidependency (also called write after read [WAR] dependency), arises.  

Instruction I3 cannot complete execution before instruction I2 begins execution and has 

fetched its operands. This is so because I3 updates register R3, which is a source 

operand for I2. The term antidependency is used because the constraint is similar to that 

of a true data dependency, but reversed: Instead of the first instruction producing a value 

that the second instruction uses, the second instruction destroys a value that the first 

instruction uses.  
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Register Renaming 

 

When out-of-order instruction issuing and/or out-of-order instruction completion are 

allowed, we have seen that this gives rise to the possibility of WAW dependencies and 

WAR dependencies. These dependencies differ from RAW data dependencies and 

resource conflicts, which reflect the flow of data through a program and the sequence of 

execution.  

 

WAW dependencies and WAR dependencies, on the other hand, arise because the 

values in registers may no longer reflect the sequence of values dictated by the program 

flow.  

When instructions are issued in sequence and complete in sequence, it is possible to 

specify the contents of each register at each point in the execution. When out-of-order 

techniques are used, the values in registers cannot be fully known at each point in time 

just from a consideration of the sequence of instructions dictated by the program. In 

effect, values are in conflict for the use of registers, and the processor must resolve 

those conflicts by occasionally stalling a pipeline stage.  

 

Antidependencies and output dependencies are both examples of storage conflicts. 

Multiple instructions are competing for the use of the same register locations, generating 

pipeline constraints that retard performance. The problem is made more acute when 

register optimization techniques are used (as discussed in Chapter 15), because these 

compiler techniques attempt to maximize the use of registers, hence maximizing the 

number of storage conflicts.  

One method for coping with these types of storage conflicts is based on a traditional 

resource-conflict solution: duplication of resources. In this context, the technique is 

referred to as register renaming. In essence, registers are allocated dynamically by the 

processor hardware, and they are associated with the values needed by instructions at 

various points in time. When a new register value is created (i.e., when an instruction 

executes that has a register as a destination operand), a new register is allocated for that 

value. Subsequent instructions that access that value as a source operand in that 

register must go through a renaming process: the register references in those 

instructions must be revised to refer to the register containing the needed value. Thus, 

the same original register reference in several different instructions may refer to different 

actual registers, if different values are intended.  

 

I1: R3b  R3a op R5a 

I2: R4b  R3b + 1 

I3: R3c  R5a + 1 

I4: R7b  R3c op R4b 
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The register reference without the subscript refers to the logical register reference found 

in the instruction. The register reference with the subscript refers to a hardware register 

allocated to hold a new value. When a new allocation is made for a particular logical 

register, subsequent instruction references to that logical register as a source operand 

are made to refer to the most recently allocated hardware register (recent in terms of the 

program sequence of instructions).  
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Three hardware techniques that can be used in a superscalar processor to enhance 

performance:  

1. duplication of resources, 

2. out-of-order issue, and  

3. renaming 

 

 [SMIT89]. The study made use of a simulation that modeled a machine with the 

characteristics of the MIPS R2000, augmented with various superscalar features.  

A number of different program sequences were simulated.  

 

Figure 16.6 shows the results. In each of the graphs,  

 the vertical axis corresponds to the mean speedup of the superscalar machine 

over the scalar machine.  

 the horizontal axis shows the results for four alternative processor organizations.  

 

The base machine does not duplicate any of the functional units, but it can issue 

instructions out of order.  

 

The second configuration duplicates the load/store functional unit that accesses a data 

cache.  

 

The third configuration duplicates the ALU, and the fourth configuration duplicates both 

load/store and ALU.  

 

In each graph, results are shown for instruction window sizes of 8, 16, and 32 

instructions, which dictates the amount of lookahead the processor can do.  

 

The difference between the two graphs is that, in the second, register renaming is 

allowed. This is equivalent to saying that the first graph reflects a machine that is limited 

by all dependencies, whereas the second graph corresponds to a machine that is limited 

only by true dependencies.  

The two graphs, combined, yield some important conclusions. The first is that it is 

probably not worthwhile to add functional units without register renaming.  
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There is some slight improvement in performance, but at the cost of increased hard- 

ware complexity. With register renaming, which eliminates antidependencies and output 

dependencies, noticeable gains are achieved by adding more functional units. Note, 

however, that there is a significant difference in the amount of gain achievable between 

using an instruction window of 8 versus a larger instruction window. This indicates that 

if the instruction window is too small, data dependencies will prevent effective utilization 

of the extra functional units; the processor must be able to look quite far ahead to find 

independent instructions to utilize the hardware more fully.  
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Any high-performance pipelined machine must address the issue of dealing with 

branches.  

 

For example, the Intel 80486 addressed the problem by fetching both the next sequential 

instruction after a branch and speculatively fetching the branch target instruction. 

However, because there are two pipeline stages between prefetch and execution, this 

strategy incurs a two-cycle delay when the branch gets taken.  

 

With the advent of RISC machines, the delayed branch strategy was explored. This 

allows the processor to calculate the result of conditional branch instructions before any 

unusable instructions have been prefetched. With this method, the processor always 

executes the single instruction that immediately follows the branch. This keeps the 

pipeline full while the processor fetches a new instruction stream.  

 

With the development of superscalar machines, the delayed branch strategy has less 

appeal. The reason is that multiple instructions need to execute in the delay slot, raising 

several problems relating to instruction dependencies. Thus, superscalar machines have 

returned to pre-RISC techniques of branch prediction. Some, like the PowerPC 601, use a 

simple static branch prediction technique. More sophisticated processors, such as the 

PowerPC 620 and the Pentium 4, use dynamic branch prediction based on branch history 

analysis.  
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Overview of superscalar execution of programs; see Figure 16.7.  

The program to be executed consists of a linear sequence of instructions. This is the 

static program as written by the programmer or generated by the compiler. The 

instruction fetch stage, which includes branch prediction, is used to form a dynamic 

stream of instructions. This stream is examined for dependencies, and the processor 

may remove artificial dependencies. The processor then dispatches the instructions into 

a window of execution. In this window, instructions no longer form a sequential stream 

but are structured according to their true data dependencies. The processor executes 

each instruction in an order determined by the true data dependencies and hardware 
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resource availability. Finally, instructions are conceptually put back into sequential order 

and their results are recorded, i.e., committing, or retiring, the instruction. 

Because of the use of parallel, multiple pipelines, instructions may complete in an order 
different from that shown in the static program. Further, the use of branch prediction and 
speculative execution means that some instructions may complete execution and then 
must be abandoned because the branch they represent is not taken. Therefore, 
permanent storage and program-visible registers cannot be updated immediately when 
instructions complete execution. Results must be held in some sort of temporary storage 
that is usable by dependent instructions and then made permanent when it is determined 
that the sequential model would have executed the instruction.  
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Superscalar System Implementation 

 

Processor Hardware required for the Superscalar System. [SMIT95]  

 

• Instruction Fetch Strategies that simultaneously fetch multiple instructions, often by 

predicting the outcomes of, and fetching beyond, conditional branch instructions. 

These functions require the use of multiple pipeline fetch and decode stages, and 

branch prediction logic.  

 

• Logic for determining True Dependencies involving register values and mechanisms 

for communicating these values to where they are needed during execution.  

 

• Mechanisms for Initiating, or Issuing, Multiple Instructions In Parallel.  

• Resources for Parallel Execution of Multiple Instructions, including Multiple Pipelined 

Functional Units and Memory Hierarchies capable of Simultaneously Servicing Multiple 

Memory References.  

 

• Mechanisms for Committing the Process State In Correct Order.  
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Although the concept of superscalar design is generally associated with the RISC 

architecture, the same superscalar principles can be applied to a CISC machine, e.g.,  

The Pentium family.  
 

The Pentium 386 is a traditional CISC non-pipelined machine. 
  

The Pentium 486 introduced the first pipelined x86 processor, reducing the average 

latency of integer operations from between two and four cycles to one cycle, but still 

limited to executing a single instruction each cycle, with no superscalar elements.  
 

The Pentium Pro introduced a full-blown superscalar design with out-of-order execution.  
 

Subsequent x86 models have refined and enhanced the superscalar design.  

 

 

 
 
 
 
 
 
 
 
 

A general block diagram of the Pentium 4 is shown in both Figure 4.18 and Figure 16.8 

 

The operation of the Pentium 4 can be summarized as follows:  

1. The processor fetches instructions from memory in the order of the static program.  

2. Each instruction is translated into one or more fixed-length RISC instructions, known 

as micro-operations, or micro-ops. 

3. The processor executes the micro-ops on a superscalar pipeline organization,  

so that the micro-ops may be executed out of order.  

4. The processor commits the results of each micro-op execution to the processor’s 

register set in the order of the original program flow.  
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In effect, the Pentium 4 architecture implements a CISC instruction set architecture on a 
RISC micro-architecture. The inner RISC micro-ops pass through a pipeline with at least 
20 stages (Figure 16.9); in some cases, the micro-op requires multiple execution stages, 
resulting in an even longer pipeline. This contrasts with the five-stage pipeline (Figure 
14.21) used on the earlier Intel x86 processors and on the Pentium.  
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The Pentium 4 organization includes an in-order front end (Figure 16.10a) that can be 
considered outside the scope of the pipeline depicted in Figure 16.9. This front end feeds 
into an L1 instruction cache, called the trace cache, which is where the pipeline proper 
begins. Usually, the processor operates from the trace cache; when a trace cache miss 
occurs, the in-order front end feeds new instructions into the trace cache. 
  
With the aid of the branch target buffer and the instruction lookaside buffer (BTB & I-
TLB), the fetch/decode unit fetches x86 machine instructions from the L2 cache 64 bytes 
at a time. As a default, instructions are fetched sequentially, so that each L2 cache line 
fetch includes the next instruction to be fetched. Branch prediction via the BTB & I-TLB 
unit may alter this sequential fetch operation. The ITLB translates the linear instruction 
pointer address given it into physical addresses needed to access the L2 cache. Static 
branch prediction in the front-end BTB is used to determine which instructions to fetch 
next.  
 
Once instructions are fetched, the fetch/decode unit scans the bytes to determine 
instruction boundaries; this is a necessary operation because of the variable length of 
x86 instructions. The decoder translates each machine instruction into from one to four 
micro-ops, each of which is a 118-bit RISC instruction. Note for comparison that most 
pure RISC machines have an instruction length of just 32 bits. The longer micro-op 
length is required to accommodate the more complex x86 instructions. Nevertheless, the 
micro-ops are easier to manage than the original instructions from which they derive.  
The generated micro-ops are stored in the trace cache. 
 
The first two pipeline stages (Figure 16.10b) deal with the selection of instructions in the 
trace cache and involve a separate branch prediction mechanism from that described in 
the previous section. The Pentium 4 uses a dynamic branch prediction strategy based on 
the history of recent executions of branch instructions. A branch target buffer (BTB) is 
maintained that caches information about recently encountered branch instructions. 
Whenever a branch instruction is encountered in the instruction stream, the BTB is 
checked. If an entry already exists in the BTB, then the instruction unit is guided by the 
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history information for that entry in determining whether to predict that the branch is 
taken. If a branch is predicted, then the branch destination address associated with this 
entry is used for prefetching the branch target instruction.  
Once the instruction is executed, the history portion of the appropriate entry is updated 
to reflect the result of the branch instruction. If this instruction is not represented in the 
BTB, then the address of this instruction is loaded into an entry in the BTB; if necessary, 
an older entry is deleted.  
The description of the preceding two paragraphs fits, in general terms, the branch 
prediction strategy used on the original Pentium model, as well as the later Pentium 
models, including Pentium 4. However, in the case of the Pentium, a relatively simple 2-
bit history scheme is used. The later Pentium models have much longer pipelines (20 
stages for the Pentium 4 compared with 5 stages for the Pentium) and therefore the 
penalty for misprediction is greater. Accordingly, the later Pentium models use a more 
elaborate branch prediction scheme with more history bits to reduce the misprediction 
rate.  
The Pentium 4 BTB is organized as a four-way set-associative cache with 512 lines. Each 
entry uses the address of the branch as a tag. The entry also includes the branch 
destination address for the last time this branch was taken and a 4-bit history field. Thus 
use of four history bits contrasts with the 2 bits used in the original Pentium and used in 
most superscalar processors. With 4 bits, the Pentium 4 mechanism can take into 
account a longer history in predicting branches. The algorithm that is used is referred to 
as Yeh’s algorithm [YEH91]. The developers of this algorithm have demonstrated that it 
provides a significant reduction in misprediction compared to algorithms that use only 2 
bits of history [EVER98].  
Conditional branches that do not have a history in the BTB are predicted using a static 
prediction algorithm, according to the following rules:  

• For branch addresses that are not IP relative, predict taken if the branch is a 
return and not taken otherwise.  

• For IP-relative backward conditional branches, predict taken. This rule reflects the 
typical behavior of loops.  

• For IP-relative forward conditional branches, predict not taken.  
The trace cache (Figure 16.10c) takes the already-decoded micro-ops from the 
instruction decoder and assembles them in to program-ordered sequences of micro-ops 
called traces. Micro-ops are fetched sequentially from the trace cache, subject to the 
branch prediction logic.  
A few instructions require more than four micro-ops. These instructions are transferred 
to microcode ROM, which contains the series of micro-ops (five or more) associated with 
a complex machine instruction. For example, a string instruction may translate into a 
very large (even hundreds), repetitive sequence of micro- ops. Thus, the microcode ROM 
is a microprogrammed control unit in the sense discussed in Part Four. After the 
microcode ROM finishes sequencing micro-ops for the current Pentium instruction, 
fetching resumes from the trace cache.  
The fifth stage (Figure 16.10d) of the Pentium 4 pipeline delivers decoded instructions 
from the trace cache to the rename/allocator module.  
The allocate stage (Figure 16.10e) allocates resources required for execution. It performs 
the following functions:  

• If a needed resource, such as a register, is unavailable for one of the three micro-
ops arriving at the allocator during a clock cycle, the allocator stalls the pipeline.  

• The allocator allocates a reorder buffer (ROB) entry, which tracks the completion 
status of one of the 126 micro-ops that could be in process at any time.  



C. R. Putnam Comp 222 Computer Organization  
Chapter 16 Stallings & Architecture, 9

th
 ed. 

• The allocator allocates one of the 128 integer or floating-point register entries for 
the result data value of the micro-op, and possibly a load or store buffer used to 
track one of the 48 loads or 24 stores in the machine pipeline.  

• The allocator allocates an entry in one of the two micro-op queues in front of the 
instruction schedulers.  

The ROB is a circular buffer that can hold up to 126 micro-ops and also contains the 128 
hardware registers. Each buffer entry consists of the following fields:  

• State: Indicates whether this micro-op is scheduled for execution, has been 
dispatched for execution, or has completed execution and is ready for retirement.  

• Memory Address: The address of the Pentium instruction that generated the 
micro-op.  

• Micro-op: The actual operation.  
• Alias Register: If the micro-op references one of the 16 architectural registers,  

this entry redirects that reference to one of the 128 hardware registers.  
Micro-ops enter the ROB in order. Micro-ops are then dispatched from the ROB to the 
Dispatch/Execute unit out of order. The criterion for dispatch is that the appropriate 
execution unit and all necessary data items required for this micro- op are available. 
Finally, micro-ops are retired from the ROB in order. To accomplish in-order retirement, 
micro-ops are retired oldest first after each micro-op has been designated as ready for 
retirement.  
The rename stage (Figure 16.10e) remaps references to the 16 architectural registers (8 
floating-point registers, plus EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP) into a set of 
128 physical registers. The stage removes false dependencies caused by a limited 
number of architectural registers while preserving the true data dependencies (reads 
after writes).  
After resource allocation and register renaming, micro-ops are placed in one of two 
micro-op queues (Figure 16.10f), where they are held until there is room in the 
schedulers. One of the two queues is for memory operations (loads and stores) and the 
other for micro-ops that do not involve memory references. Each queue obeys a FIFO 
(first-in-first-out) discipline, but no order is maintained between queues. That is, a micro-
op may be read out of one queue out of order with respect to micro-ops in the other 
queue. This provides greater flexibility to the schedulers.  
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The schedulers (Figure 16.10g) are responsible for retrieving micro-ops from the micro-
op queues and dispatching these for execution. Each scheduler looks for micro-ops in 
whose status indicates that the micro-op has all of its operands. If the execution unit 
needed by that micro-op is available, then the scheduler fetches the micro-op and 
dispatches it to the appropriate execution unit (Figure 16.10h). Up to six micro-ops can 
be dispatched in one cycle. If more than one micro-op is available for a given execution 
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unit, then the scheduler dispatches them in sequence from the queue. This is a sort of 
FIFO discipline that favors in-order execution, but by this time the instruction stream has 
been so rearranged by dependencies and branches that it is substantially out of order.  
Four ports attach the schedulers to the execution units. Port 0 is used for both integer 
and floating-point instructions, with the exception of simple integer operations and the 
handling of branch mispredictions, which are allocated to Port 1. In addition, MMX 
execution units are allocated between these two ports. The remaining ports are for 
memory loads and stores.  
The integer and floating-point register files are the source for pending operations by the 
execution units (Figure 16.10i). The execution units retrieve values from the register files 
as well as from the L1 data cache (Figure 16.10j). A separate pipeline stage is used to 
compute flags (e.g., zero, negative); these are typically the input to a branch instruction.  
A subsequent pipeline stage performs branch checking (Figure 16.10k). This function 
compares the actual branch result with the prediction. If a branch prediction turns out to 
have been wrong, then there are micro-operations in various stages of processing that 
must be removed from the pipeline. The proper branch destination is then provided to 
the Branch Predictor during a drive stage (Figure 16.10l), which restarts the whole 
pipeline from the new target address.  
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