
C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

Slide 2

A superscalar implementation of the processor architecture is one in which common

instructions—integer and floating-point arithmetic, loads, stores, and conditional

branches—can be initiated simultaneously and executed independently. Such

implementations raise a number of complex design issues related to the instruction

pipeline.

Superscalar design arrived on the scene hard on the heels of RISC architecture.

Although the simplified instruction set architecture of a RISC machine lends itself readily

to superscalar techniques, the superscalar approach can be used on either a RISC or

CISC architecture.

Whereas the gestation period for the arrival of commercial RISC machines from the

beginning of true RISC research with the IBM 801 and the Berkeley RISC I was seven or

eight years, the first superscalar machines became commercially available within just a

year or two of the coining of the term superscalar. The superscalar approach has now

become the standard method for implementing high- performance microprocessors.

In this chapter, we begin with an overview of the superscalar approach, contrasting it

with superpipelining. Next, we present the key design issues associated with superscalar

implementation. Then we look at several important examples of superscalar architecture.

Slide 3

The term superscalar, first coined in 1987 [AGER87], refers to a machine that is designed

to improve the performance of the execution of scalar instructions. In most applications,

the bulk of the operations are on scalar quantities. Accordingly, the superscalar

approach represents the next step in the evolution of high-performance general-purpose

processors.

The essence of the superscalar approach is the ability to execute instructions

independently and concurrently in different pipelines. The concept can be further

exploited by allowing instructions to be executed in an order different from the program

order.

Slide 4

Figure 16.1 compares, in general terms, the scalar and superscalar approaches. In a

traditional scalar organization, there is a single pipelined functional unit for integer

operations and one for floating-point operations. Parallelism is achieved by enabling

multiple instructions to be at different stages of the pipeline at one time. In the

superscalar organization, there are multiple functional units, each of which is

implemented as a pipeline. Each individual functional unit provides a degree of

parallelism by virtue of its pipelined structure. The use of multiple functional units

enables the processor to execute streams of instructions in parallel, one stream for each

pipeline. It is the responsibility of the hardware, in conjunction with the compiler, to

assure that the parallel execution does not violate the intent of the program.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

Slide 6

An alternative approach to achieving greater performance is referred to as super-

pipelining, a term first coined in 1988 [JOUP88]. Superpipelining exploits the fact that

many pipeline stages perform tasks that require less than half a clock cycle. Thus, a

doubled internal clock speed allows the performance of two tasks in one external clock

cycle. We have seen one example of this approach with the MIPS R4000.

Figure 16.2 compares the two approaches. The upper part of the diagram illustrates an

ordinary pipeline, used as a base for comparison. The base pipeline issues one

instruction per clock cycle and can perform one pipeline stage per clock cycle. The

pipeline has four stages: instruction fetch, operation decode, operation execution, and

result write back. The execution stage is crosshatched for clarity. Note that although

several instructions are executing concurrently, only one instruction is in its execution

stage at any one time.

The next part of the diagram shows a superpipelined implementation that is capable of

performing two pipeline stages per clock cycle. An alternative way of looking at this is

that the functions performed in each stage can be split into two non-overlapping parts

and each can execute in half a clock cycle. A superpipeline implementation that behaves

in this fashion is said to be of degree 2. Finally, the lowest part of the diagram shows a

superscalar implementation capable of executing two instances of each stage in parallel.

Higher-degree superpipeline and super- scalar implementations are of course possible.

Both the superpipeline and the superscalar implementations depicted in Figure 16.2 have

the same number of instructions executing at the same time in the steady state. The

superpipelined processor falls behind the superscalar processor at the start of the

program and at each branch target.

Slide 7

Instruction-level parallelism refers to the degree to which, on average, the instructions of

a program can be executed in parallel. A combination of compiler-based optimization and

hardware techniques can be used to maximize instruction-level parallelism.

Fundamental Limitations to Parallelism

• True data dependency

• Procedural dependency

• Resource conflicts

• Output dependency

• Antidependency

Slide 8

The instructions following a branch (taken or not taken) have a procedural dependency

on the branch and cannot be executed until the branch is executed; this type of

procedural dependency also affects a scalar pipeline. The consequence for a superscalar

pipeline is more severe, because a greater magnitude of opportunity is lost with each

delay.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

If variable-length instructions are used, then another sort of procedural dependency

arises. Because the length of any particular instruction is not known, it must be at least

partially decoded before the following instruction can be fetched. This prevents the

simultaneous fetching required in a superscalar pipeline. This is one of the reasons that

superscalar techniques are more readily applicable to a RISC or RISC-like architecture,

with its fixed instruction length.

A resource conflict is a competition of two or more instructions for the same resource at

the same time. Examples of resources include memories, caches, buses, register-file

ports, and functional units (e.g., ALU adder).

In terms of the pipeline, a resource conflict exhibits similar behavior to a data dependency

(Figure 16.3). There are some differences, however. For one thing, resource conflicts can

be overcome by duplication of resources, whereas a true data dependency cannot be

eliminated. Also, when an operation takes a long time to complete, resource conflicts can

be minimized by pipelining the appropriate functional unit.

Slide 9

Instruction-level parallelism exists when instructions in a sequence are independent and

thus can be executed in parallel by overlapping.

The degree of instruction-level parallelism is determined by the frequency of true data

dependencies and procedural dependencies in the code. These factors, in turn, are

dependent on the instruction set architecture and on the application.

Instruction-level parallelism is also determined by what [JOUP89a] refers to as operation

latency: the time until the result of an instruction is available for use as an operand in a

subsequent instruction. The latency determines how much of a delay a data or procedural

dependency will cause.

Machine parallelism is a measure of the ability of the processor to take advantage of

instruction-level parallelism. Machine parallelism is determined by the number of

instructions that can be fetched and executed at the same time, i.e., the number of parallel

pipelines, and by the speed and sophistication of the mechanisms that the processor uses

to find independent instructions.

Both instruction-level and machine parallelism are important factors in enhancing

performance. A program may not have enough instruction-level parallelism to take full

advantage of machine parallelism. The use of a fixed-length instruction set architecture, as

in a RISC, enhances instruction-level parallelism. On the other hand, limited machine

parallelism will limit performance no matter what the nature of the program.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

Slide 10

The term instruction issue refers to the process of initiating instruction execution in the

processor’s functional units and the term instruction issue policy to refer to the protocol

used to issue instructions. In general, we can say that instruction issue occurs when the

instruction moves from the decode stage of the pipeline to the first execute stage of the

pipeline.

Superscalar Instruction Issue Policies

 In-Order Issue with In-Order Completion

 In-Order Issue with Out-Of-Order Completion

 Out-Of-Order Issue with Out-Of-Order Completion

In essence, the processor is trying to look ahead of the current point of execution to

locate instructions that can be brought into the pipeline and executed.

Three types of orderings are important in this regard:

 The order in which instructions are fetched

 Order in which instructions are executed

 Order in which instructions update the contents of register and memory locations

The more sophisticated the processor, the less it is bound by a strict relationship

between these orderings. To optimize utilization of the various pipeline elements, the

processor will need to alter one or more of these orderings with respect to the ordering

to be found in a strict sequential execution. The one constraint on the processor is that

the result must be correct. Thus, the processor must accommodate the various

dependencies and conflicts discussed earlier.

Slide 11

The simplest instruction issue policy is to issue instructions in the exact order that would

be achieved by sequential execution, i.e., in-order issue, and to write results in that same

order, i.e., in-order completion. Not even scalar pipelines follow such a simple-minded

policy. USE this policy as a baseline for comparing more sophisticated approaches.

Figure 16.4a gives an example of this policy. We assume a superscalar pipeline capable

of fetching and decoding two instructions at a time, having three separate functional

units, i.e., two integer arithmetic and one floating-point arithmetic functional units, and

having two instances of the write-back pipeline stage.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

16.4 (a)

Constraints on a six-instruction code

fragment:

I1 requires two cycles to execute.

I3 and I4 conflict for the same functional unit.

I5 depends on the value produced by I4.

I5 and I6 conflict for a functional unit.

Instructions are fetched two at a time

and passed to the decode unit. Because

instructions are fetched in pairs, the next

two instructions must wait until the pair

of decode pipeline stages has cleared.

To guarantee in-order completion, when

there is a conflict for a functional unit or

when a functional unit requires more

than one cycle to generate a result, the

issuing of instructions temporarily stalls.

In this example, the elapsed time from

decoding the first instruction to writing

the last results is eight cycles.

16.4 (a)

In-order issue & in-order completion

Constraints on a six-instruction code

fragment:

I1 requires two cycles to execute.

I3 and I4 conflict for the same functional unit.

I5 depends on the value produced by I4.

I5 and I6 conflict for a functional unit.

Instructions are fetched two at a time

and passed to the decode unit. Because

instructions are fetched in pairs, the next

two instructions must wait until the pair

of decode pipeline stages has cleared.

To guarantee in-order completion, when

there is a conflict for a functional unit or

when a functional unit requires more

than one cycle to generate a result, the

issuing of instructions temporarily stalls.

In this example, the elapsed time from

decoding the first instruction to writing

the last results is eight cycles.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

16.4 (b) In-Order Issue & Out-of-Order

Completion

 scalar RISC processors use out-of-order

completion to improve the performance of

instructions that require multiple cycles.

 With out-of-order completion, any number of

instructions may be in the execution stage at

any one time, up to the maximum degree of

machine parallelism across all functional units.

 Instruction issuing is stalled by a resource

conflict, a data dependency, or a procedural

dependency.

 an output dependency, Write After Write, i.e.,

[WAW], arises.

I1: R3 R3 op R5

I2: R4 R3 + 1

I3: R3 R5 + 1

I4: R7 R3 op R4

Instruction I2 cannot execute before instruction

I1, because it needs the result in register R3

produced in I1; this is an example of a true data

dependency, as described in Section 16.1.

Similarly, I4 must wait for I3, because it uses a

result produced by I3.

What about the relationship between I1 and I3?

There is no data dependency here, as we have

defined it. However, if I3 executes to completion

prior to I1, then the wrong value of the contents

of R3 will be fetched for the execution of I4.

Consequently, I3 must complete after I1 to

produce the correct output values. To ensure

this, the issuing of the third instruction must be

stalled if its result might later be overwritten by

an older instruction that takes longer to

complete.

Out-of-order completion requires more complex instruction issue logic than in-order completion. In

addition, it is more difficult to deal with instruction interrupts and exceptions. When an interrupt

occurs, instruction execution at the current point is suspended, to be resumed later. The processor

must assure that the resumption takes into account that, at the time of interruption, instructions

ahead of the instruction that caused the interrupt may already have completed.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

Out-of-Order Issue & Out-of-Order Completion

In-Order Issue processor only decodes instructions up to a dependency or conflict.
No additional instructions are decoded until the problem is resolved. Processor can not look

beyond the point of conflict to instructions independent of those in the pipeline.

Decouple the Decode and Execute stages of the pipeline Instruction Window Buffer

Fetch Decode Window (repeat until window is full)

Execute Unit Available select an instruction such that

 (1) it needs the available unit, &

 (2) no conflicts nor dependencies block the instruction

 Processor has Look-Head Capability: it identifies independent instructions that can be

provided to the execute units.

Instructions are issued from the Instruction Window without regard to their original program

order.

I1 requires two cycles to execute. I3 and I4 conflict for the same functional unit.

I5 depends on the value produced by I4. I5 and I6 conflict for a functional unit.

I6 can execute before I5 which saves one cycle from 16.4(b)

Write After Read [WAR] Dependency

I1: R3 R3 op R5 I2: R4 R3 + 1 I3: R3 R5 + 1 I4: R7 R3 op R4

I3 cannot complete execution before I2 has fetched its operands

Antidepedency == second instruction destroys a value that the first instruction requires.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

Slide 12

With in-order issue, the processor will only decode instructions up to the point of a

dependency or conflict. No additional instructions are decoded until the conflict is

resolved. As a result, the processor cannot look ahead of the point of conflict to

subsequent instructions that may be independent of those already in the pipeline and

that may be usefully introduced into the pipeline.

To allow out-of-order issue, it is necessary to decouple the decode and execute stages of

the pipeline. This is done with a buffer referred to as an instruction window. With this

organization, after a processor has finished decoding an instruction, it is placed in the

instruction window. As long as this buffer is not full, the processor can continue to fetch

and decode new instructions. When a functional unit becomes available in the execute

stage, an instruction from the instruction window may be issued to the execute stage.

Any instruction may be issued, provided that (1) it needs the particular functional unit

that is available, and (2) no conflicts or dependencies block this instruction. Figure 16.5

suggests this organization.

The result of this organization is that the processor has a lookahead capability, allowing

it to identify independent instructions that can be brought into the execute stage.

Instructions are issued from the instruction window with little regard for their original

program order. As before, the only constraint is that the program execution behaves

correctly.

Figures 16.4c illustrates this policy. During each of the first three cycles, two instructions

are fetched into the decode stage. During each cycle, subject to the constraint of the

buffer size, two instructions move from the decode stage to the instruction window. In

this example, it is possible to issue instruction I6 ahead of I5 (recall that I5 depends on I4,

but I6 does not). Thus, one cycle is saved in both the execute and write-back stages, and

the end-to-end savings, compared with Figure 16.4b, is one cycle.

The instruction window is depicted in Figure 16.4c to illustrate its role. However, this

window is not an additional pipeline stage. An instruction being in the window simply

implies that the processor has sufficient information about that instruction to decide

when it can be issued.

The out-of-order issue, out-of-order completion policy is subject to the same constraints

described earlier. An instruction cannot be issued if it violates a dependency or conflict.

The difference is that more instructions are available for issuing, reducing the probability

that a pipeline stage will have to stall. In addition, a new dependency, which we referred

to earlier as an antidependency (also called write after read [WAR] dependency), arises.

Instruction I3 cannot complete execution before instruction I2 begins execution and has

fetched its operands. This is so because I3 updates register R3, which is a source

operand for I2. The term antidependency is used because the constraint is similar to that

of a true data dependency, but reversed: Instead of the first instruction producing a value

that the second instruction uses, the second instruction destroys a value that the first

instruction uses.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

Slide 13

Register Renaming

When out-of-order instruction issuing and/or out-of-order instruction completion are

allowed, we have seen that this gives rise to the possibility of WAW dependencies and

WAR dependencies. These dependencies differ from RAW data dependencies and

resource conflicts, which reflect the flow of data through a program and the sequence of

execution.

WAW dependencies and WAR dependencies, on the other hand, arise because the

values in registers may no longer reflect the sequence of values dictated by the program

flow.

When instructions are issued in sequence and complete in sequence, it is possible to

specify the contents of each register at each point in the execution. When out-of-order

techniques are used, the values in registers cannot be fully known at each point in time

just from a consideration of the sequence of instructions dictated by the program. In

effect, values are in conflict for the use of registers, and the processor must resolve

those conflicts by occasionally stalling a pipeline stage.

Antidependencies and output dependencies are both examples of storage conflicts.

Multiple instructions are competing for the use of the same register locations, generating

pipeline constraints that retard performance. The problem is made more acute when

register optimization techniques are used (as discussed in Chapter 15), because these

compiler techniques attempt to maximize the use of registers, hence maximizing the

number of storage conflicts.

One method for coping with these types of storage conflicts is based on a traditional

resource-conflict solution: duplication of resources. In this context, the technique is

referred to as register renaming. In essence, registers are allocated dynamically by the

processor hardware, and they are associated with the values needed by instructions at

various points in time. When a new register value is created (i.e., when an instruction

executes that has a register as a destination operand), a new register is allocated for that

value. Subsequent instructions that access that value as a source operand in that

register must go through a renaming process: the register references in those

instructions must be revised to refer to the register containing the needed value. Thus,

the same original register reference in several different instructions may refer to different

actual registers, if different values are intended.

I1: R3b R3a op R5a

I2: R4b R3b + 1

I3: R3c R5a + 1

I4: R7b R3c op R4b

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

The register reference without the subscript refers to the logical register reference found

in the instruction. The register reference with the subscript refers to a hardware register

allocated to hold a new value. When a new allocation is made for a particular logical

register, subsequent instruction references to that logical register as a source operand

are made to refer to the most recently allocated hardware register (recent in terms of the

program sequence of instructions).

Slide 14

Three hardware techniques that can be used in a superscalar processor to enhance

performance:

1. duplication of resources,

2. out-of-order issue, and

3. renaming

 [SMIT89]. The study made use of a simulation that modeled a machine with the

characteristics of the MIPS R2000, augmented with various superscalar features.

A number of different program sequences were simulated.

Figure 16.6 shows the results. In each of the graphs,

 the vertical axis corresponds to the mean speedup of the superscalar machine

over the scalar machine.

 the horizontal axis shows the results for four alternative processor organizations.

The base machine does not duplicate any of the functional units, but it can issue

instructions out of order.

The second configuration duplicates the load/store functional unit that accesses a data

cache.

The third configuration duplicates the ALU, and the fourth configuration duplicates both

load/store and ALU.

In each graph, results are shown for instruction window sizes of 8, 16, and 32

instructions, which dictates the amount of lookahead the processor can do.

The difference between the two graphs is that, in the second, register renaming is

allowed. This is equivalent to saying that the first graph reflects a machine that is limited

by all dependencies, whereas the second graph corresponds to a machine that is limited

only by true dependencies.

The two graphs, combined, yield some important conclusions. The first is that it is

probably not worthwhile to add functional units without register renaming.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

There is some slight improvement in performance, but at the cost of increased hard-

ware complexity. With register renaming, which eliminates antidependencies and output

dependencies, noticeable gains are achieved by adding more functional units. Note,

however, that there is a significant difference in the amount of gain achievable between

using an instruction window of 8 versus a larger instruction window. This indicates that

if the instruction window is too small, data dependencies will prevent effective utilization

of the extra functional units; the processor must be able to look quite far ahead to find

independent instructions to utilize the hardware more fully.

Slide 15

Any high-performance pipelined machine must address the issue of dealing with

branches.

For example, the Intel 80486 addressed the problem by fetching both the next sequential

instruction after a branch and speculatively fetching the branch target instruction.

However, because there are two pipeline stages between prefetch and execution, this

strategy incurs a two-cycle delay when the branch gets taken.

With the advent of RISC machines, the delayed branch strategy was explored. This

allows the processor to calculate the result of conditional branch instructions before any

unusable instructions have been prefetched. With this method, the processor always

executes the single instruction that immediately follows the branch. This keeps the

pipeline full while the processor fetches a new instruction stream.

With the development of superscalar machines, the delayed branch strategy has less

appeal. The reason is that multiple instructions need to execute in the delay slot, raising

several problems relating to instruction dependencies. Thus, superscalar machines have

returned to pre-RISC techniques of branch prediction. Some, like the PowerPC 601, use a

simple static branch prediction technique. More sophisticated processors, such as the

PowerPC 620 and the Pentium 4, use dynamic branch prediction based on branch history

analysis.

Slide 16

Overview of superscalar execution of programs; see Figure 16.7.

The program to be executed consists of a linear sequence of instructions. This is the

static program as written by the programmer or generated by the compiler. The

instruction fetch stage, which includes branch prediction, is used to form a dynamic

stream of instructions. This stream is examined for dependencies, and the processor

may remove artificial dependencies. The processor then dispatches the instructions into

a window of execution. In this window, instructions no longer form a sequential stream

but are structured according to their true data dependencies. The processor executes

each instruction in an order determined by the true data dependencies and hardware

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

resource availability. Finally, instructions are conceptually put back into sequential order

and their results are recorded, i.e., committing, or retiring, the instruction.

Because of the use of parallel, multiple pipelines, instructions may complete in an order
different from that shown in the static program. Further, the use of branch prediction and
speculative execution means that some instructions may complete execution and then
must be abandoned because the branch they represent is not taken. Therefore,
permanent storage and program-visible registers cannot be updated immediately when
instructions complete execution. Results must be held in some sort of temporary storage
that is usable by dependent instructions and then made permanent when it is determined
that the sequential model would have executed the instruction.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

Slide 17

Superscalar System Implementation

Processor Hardware required for the Superscalar System. [SMIT95]

• Instruction Fetch Strategies that simultaneously fetch multiple instructions, often by

predicting the outcomes of, and fetching beyond, conditional branch instructions.

These functions require the use of multiple pipeline fetch and decode stages, and

branch prediction logic.

• Logic for determining True Dependencies involving register values and mechanisms

for communicating these values to where they are needed during execution.

• Mechanisms for Initiating, or Issuing, Multiple Instructions In Parallel.

• Resources for Parallel Execution of Multiple Instructions, including Multiple Pipelined

Functional Units and Memory Hierarchies capable of Simultaneously Servicing Multiple

Memory References.

• Mechanisms for Committing the Process State In Correct Order.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

Slide 18

Although the concept of superscalar design is generally associated with the RISC

architecture, the same superscalar principles can be applied to a CISC machine, e.g.,

The Pentium family.

The Pentium 386 is a traditional CISC non-pipelined machine.

The Pentium 486 introduced the first pipelined x86 processor, reducing the average

latency of integer operations from between two and four cycles to one cycle, but still

limited to executing a single instruction each cycle, with no superscalar elements.

The Pentium Pro introduced a full-blown superscalar design with out-of-order execution.

Subsequent x86 models have refined and enhanced the superscalar design.

A general block diagram of the Pentium 4 is shown in both Figure 4.18 and Figure 16.8

The operation of the Pentium 4 can be summarized as follows:

1. The processor fetches instructions from memory in the order of the static program.

2. Each instruction is translated into one or more fixed-length RISC instructions, known

as micro-operations, or micro-ops.

3. The processor executes the micro-ops on a superscalar pipeline organization,

so that the micro-ops may be executed out of order.

4. The processor commits the results of each micro-op execution to the processor’s

register set in the order of the original program flow.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

Slide 19
In effect, the Pentium 4 architecture implements a CISC instruction set architecture on a
RISC micro-architecture. The inner RISC micro-ops pass through a pipeline with at least
20 stages (Figure 16.9); in some cases, the micro-op requires multiple execution stages,
resulting in an even longer pipeline. This contrasts with the five-stage pipeline (Figure
14.21) used on the earlier Intel x86 processors and on the Pentium.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

Slide 20
The Pentium 4 organization includes an in-order front end (Figure 16.10a) that can be
considered outside the scope of the pipeline depicted in Figure 16.9. This front end feeds
into an L1 instruction cache, called the trace cache, which is where the pipeline proper
begins. Usually, the processor operates from the trace cache; when a trace cache miss
occurs, the in-order front end feeds new instructions into the trace cache.

With the aid of the branch target buffer and the instruction lookaside buffer (BTB & I-
TLB), the fetch/decode unit fetches x86 machine instructions from the L2 cache 64 bytes
at a time. As a default, instructions are fetched sequentially, so that each L2 cache line
fetch includes the next instruction to be fetched. Branch prediction via the BTB & I-TLB
unit may alter this sequential fetch operation. The ITLB translates the linear instruction
pointer address given it into physical addresses needed to access the L2 cache. Static
branch prediction in the front-end BTB is used to determine which instructions to fetch
next.

Once instructions are fetched, the fetch/decode unit scans the bytes to determine
instruction boundaries; this is a necessary operation because of the variable length of
x86 instructions. The decoder translates each machine instruction into from one to four
micro-ops, each of which is a 118-bit RISC instruction. Note for comparison that most
pure RISC machines have an instruction length of just 32 bits. The longer micro-op
length is required to accommodate the more complex x86 instructions. Nevertheless, the
micro-ops are easier to manage than the original instructions from which they derive.
The generated micro-ops are stored in the trace cache.

The first two pipeline stages (Figure 16.10b) deal with the selection of instructions in the
trace cache and involve a separate branch prediction mechanism from that described in
the previous section. The Pentium 4 uses a dynamic branch prediction strategy based on
the history of recent executions of branch instructions. A branch target buffer (BTB) is
maintained that caches information about recently encountered branch instructions.
Whenever a branch instruction is encountered in the instruction stream, the BTB is
checked. If an entry already exists in the BTB, then the instruction unit is guided by the

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

history information for that entry in determining whether to predict that the branch is
taken. If a branch is predicted, then the branch destination address associated with this
entry is used for prefetching the branch target instruction.
Once the instruction is executed, the history portion of the appropriate entry is updated
to reflect the result of the branch instruction. If this instruction is not represented in the
BTB, then the address of this instruction is loaded into an entry in the BTB; if necessary,
an older entry is deleted.
The description of the preceding two paragraphs fits, in general terms, the branch
prediction strategy used on the original Pentium model, as well as the later Pentium
models, including Pentium 4. However, in the case of the Pentium, a relatively simple 2-
bit history scheme is used. The later Pentium models have much longer pipelines (20
stages for the Pentium 4 compared with 5 stages for the Pentium) and therefore the
penalty for misprediction is greater. Accordingly, the later Pentium models use a more
elaborate branch prediction scheme with more history bits to reduce the misprediction
rate.
The Pentium 4 BTB is organized as a four-way set-associative cache with 512 lines. Each
entry uses the address of the branch as a tag. The entry also includes the branch
destination address for the last time this branch was taken and a 4-bit history field. Thus
use of four history bits contrasts with the 2 bits used in the original Pentium and used in
most superscalar processors. With 4 bits, the Pentium 4 mechanism can take into
account a longer history in predicting branches. The algorithm that is used is referred to
as Yeh’s algorithm [YEH91]. The developers of this algorithm have demonstrated that it
provides a significant reduction in misprediction compared to algorithms that use only 2
bits of history [EVER98].
Conditional branches that do not have a history in the BTB are predicted using a static
prediction algorithm, according to the following rules:

• For branch addresses that are not IP relative, predict taken if the branch is a
return and not taken otherwise.

• For IP-relative backward conditional branches, predict taken. This rule reflects the
typical behavior of loops.

• For IP-relative forward conditional branches, predict not taken.
The trace cache (Figure 16.10c) takes the already-decoded micro-ops from the
instruction decoder and assembles them in to program-ordered sequences of micro-ops
called traces. Micro-ops are fetched sequentially from the trace cache, subject to the
branch prediction logic.
A few instructions require more than four micro-ops. These instructions are transferred
to microcode ROM, which contains the series of micro-ops (five or more) associated with
a complex machine instruction. For example, a string instruction may translate into a
very large (even hundreds), repetitive sequence of micro- ops. Thus, the microcode ROM
is a microprogrammed control unit in the sense discussed in Part Four. After the
microcode ROM finishes sequencing micro-ops for the current Pentium instruction,
fetching resumes from the trace cache.
The fifth stage (Figure 16.10d) of the Pentium 4 pipeline delivers decoded instructions
from the trace cache to the rename/allocator module.
The allocate stage (Figure 16.10e) allocates resources required for execution. It performs
the following functions:

• If a needed resource, such as a register, is unavailable for one of the three micro-
ops arriving at the allocator during a clock cycle, the allocator stalls the pipeline.

• The allocator allocates a reorder buffer (ROB) entry, which tracks the completion
status of one of the 126 micro-ops that could be in process at any time.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

• The allocator allocates one of the 128 integer or floating-point register entries for
the result data value of the micro-op, and possibly a load or store buffer used to
track one of the 48 loads or 24 stores in the machine pipeline.

• The allocator allocates an entry in one of the two micro-op queues in front of the
instruction schedulers.

The ROB is a circular buffer that can hold up to 126 micro-ops and also contains the 128
hardware registers. Each buffer entry consists of the following fields:

• State: Indicates whether this micro-op is scheduled for execution, has been
dispatched for execution, or has completed execution and is ready for retirement.

• Memory Address: The address of the Pentium instruction that generated the
micro-op.

• Micro-op: The actual operation.
• Alias Register: If the micro-op references one of the 16 architectural registers,

this entry redirects that reference to one of the 128 hardware registers.
Micro-ops enter the ROB in order. Micro-ops are then dispatched from the ROB to the
Dispatch/Execute unit out of order. The criterion for dispatch is that the appropriate
execution unit and all necessary data items required for this micro- op are available.
Finally, micro-ops are retired from the ROB in order. To accomplish in-order retirement,
micro-ops are retired oldest first after each micro-op has been designated as ready for
retirement.
The rename stage (Figure 16.10e) remaps references to the 16 architectural registers (8
floating-point registers, plus EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP) into a set of
128 physical registers. The stage removes false dependencies caused by a limited
number of architectural registers while preserving the true data dependencies (reads
after writes).
After resource allocation and register renaming, micro-ops are placed in one of two
micro-op queues (Figure 16.10f), where they are held until there is room in the
schedulers. One of the two queues is for memory operations (loads and stores) and the
other for micro-ops that do not involve memory references. Each queue obeys a FIFO
(first-in-first-out) discipline, but no order is maintained between queues. That is, a micro-
op may be read out of one queue out of order with respect to micro-ops in the other
queue. This provides greater flexibility to the schedulers.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

Slide 21

The schedulers (Figure 16.10g) are responsible for retrieving micro-ops from the micro-
op queues and dispatching these for execution. Each scheduler looks for micro-ops in
whose status indicates that the micro-op has all of its operands. If the execution unit
needed by that micro-op is available, then the scheduler fetches the micro-op and
dispatches it to the appropriate execution unit (Figure 16.10h). Up to six micro-ops can
be dispatched in one cycle. If more than one micro-op is available for a given execution

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

unit, then the scheduler dispatches them in sequence from the queue. This is a sort of
FIFO discipline that favors in-order execution, but by this time the instruction stream has
been so rearranged by dependencies and branches that it is substantially out of order.
Four ports attach the schedulers to the execution units. Port 0 is used for both integer
and floating-point instructions, with the exception of simple integer operations and the
handling of branch mispredictions, which are allocated to Port 1. In addition, MMX
execution units are allocated between these two ports. The remaining ports are for
memory loads and stores.
The integer and floating-point register files are the source for pending operations by the
execution units (Figure 16.10i). The execution units retrieve values from the register files
as well as from the L1 data cache (Figure 16.10j). A separate pipeline stage is used to
compute flags (e.g., zero, negative); these are typically the input to a branch instruction.
A subsequent pipeline stage performs branch checking (Figure 16.10k). This function
compares the actual branch result with the prediction. If a branch prediction turns out to
have been wrong, then there are micro-operations in various stages of processing that
must be removed from the pipeline. The proper branch destination is then provided to
the Branch Predictor during a drive stage (Figure 16.10l), which restarts the whole
pipeline from the new target address.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

C. R. Putnam Comp 222 Computer Organization
Chapter 16 Stallings & Architecture, 9

th
 ed.

