Operating Systems

Interface between User & Computer Hardware

Applications
Programs

UtilitieD

Operating
System

Hardware

Utilities Memory Resident File Access & Control
e Program Creation e Memory Resident File Format Structures
o Editors e Access Management
o Compilers e Protection Schemes

o Debuggers
System Access & Control
e File Manipulation e System-Wide Access
o File Manipulation e Resource Access
o File Deletion
Error Detection & Response Mechanism

Program Execution e Error Detection

. Lmk-L_oaders e Error Correction

* Run-Time Management e Response to Unrecoverable Error
I/0 Device Access & Control Accounting

e Storage File Format Structures System Usage Collection

e Access Management e System Performance Tuning

» Protection Schemes e Forecasting Enhancement Requirements
e Billing Users for Usage

Resource Manager

O/S Kernel 1/0 Controller Printers,
Keyboards,
) 1/0 Controller Monitors,
Portions of Cameras,
the O/S Etc.
currently in
use
Computer
System
Portions of Memory
R Va:-rlm:-s . 1/0
pplication Devices
Programs
Currently in use
Operating \

System

Application
Programs

1/0 Controller (¢

A 4

> Storage

Processor Processor

Processor Processor

Operation

¢ Allocation of Main Memory is made jointly by both the O/S and Memory
Management Hardware

e O/S controls access to 1/0 devices by Application Programs

¢ O/S controls access to and use of files

¢ O/S controls access to and use of the processors, i.e., how much time can be
allocated to the execution of a particular Application Program

Classification of Operating Systems

Interactive O/S

e Keyboard & Monitor Access to O/S

e Immediate, i.e., Interactive, Communication with the Program during Execution Phase

Batch O/S

e Multiple Programs from a diverse set of Users are batched together and submitted for execution

e Results are printed for each User Program to be read offline

e Example: Batch Updating of Bank Account Master Files at the conclusion of a Transaction

Period (end of day)

Uniprogramming

e Single Program is loaded into Main Memory

e Processor concentrates on executing that program to completion

Multiprogramming

e Multiple Programs are loaded into Main Memory

e Processor executes the programs concurrently, i.e., switches between programs to maximize

processor utilization

N A J
Y Y
Interactive Batch
o/s o/s

Early Systems

No Operating Systems
Console

Jgég Muiltiprogramming

Uniprogramming

o Set of Display Lights to indicate the state of the processor

o Single Row of Display Lights used to indicate a single command written in binary numbers
o Set of Toggle Switches to set the Display Lights for a single command written in binary code

Input Device — Card Reader
Program Creation
Written on Coding Pads

O O O O O O O

Program Execution

Transcribed to Hollerith Cards via a Card Punch Machine (cast iron)

Program in Hollerith Card Format read into the Main Memory by the use of a Card Reader
Programs were written to absolute memory locations
Entire program had to loaded into memory

Program could be written to Magnetic Tape by the use of a Tape Drive in write mode
Program could be retrieved from the magnetic tape by the use of a Tape Drive in read mode

o Initiated by a special “GO” switch on the console

o Error condition — program halted; status could be investigated by inspecting registers and

main memory

o Normal Completion — output to printer or Card Punch

Scheduling
e Sign Up Sheet
o Blocks of Time — 15 minutes
o waste of processing time — sign up for more time than required
o Inefficient use of time — need more time than allotted — forced to stop -- necessitates return
at a different time — results in inefficient use of programmers time

Later Early Systems
e Setup Time
o Single Program (job)

o Loading Compiler

o Loading High Level language Source Code

o Saving the Object Code after compilation

o Loading & Linking Program Object Code and Library Function Object Codes
Attaching/Detaching Loading/Unloading
e Magnetic Tape Drives e Magnetic Tape Drives
e Card Readers e Card Readers

e Serial Processing —users had access to the computer System in Series

e Software Tools 4 Int ¢ P .
o Libraries of Common Functions nterrupt Frocessing
o Linkers Device Drivers
o Loaders
o Debuggers Memory Map Job Sequencing
o I/O Driver Routines of a Resident <
Monitor
Command Language
Simple Batch Operating Systems (Monitors) Interpreter
e User
o does not have direct access to the Computer System \| User Program Area

o submits job to an operator (cards/tape)
e Operator

o batches jobs together sequentially

o submits entire batch to monitor for processing
e Monitor controls the sequence of events

Resident Monitor — portion of the Monitor that must always be in the main memory

Non-resident Monitor — portion of the Monitor that remains in storage until required
o Utilities
o Common Functions

Resident Monitor determines when to read in a new job

Monitor

o allocates memory for a new job

o reads a new job in from storage

o inserts control information at end of job requiring job to restore control to the
Monitor

o passes control to the new job

o at the end of the job, control passes back to the Resident Monitor

Monitor prints results of the previous execution for the User

Monitor schediiles a new inh

e Processor (at a certain point in time)
o is executing instructions from a portion of the Monitor residing in Main Memory that cause
the next job to be read into Main Memory
encounters a branch instruction that leads the processor to start executing the new job
encounters either an end statement or an error condition = causing the processor to fetch its
next instruction from specified locations in the Monitor code

Control is Passed to a Job
e Processor is fetching and executing instructions from the user code

Control is Returned to the Monitor
e Processor is fetching and executing instructions from the user code

e Job Control Language (JCL)
o provides control instructions to the monitor
o FORTRAN
= each instruction and each data item is coded on a separate
+ Hollerith card or
+ record on tape
= $JOB --indicates the beginning of a new job
» S$FTN -- specifies which FORTRAN compiler should be loaded
+ selected compiler produces object code — object code stored
v in memory = “compile, load & go” operation
v'on tape = $LOAD card is required to place code in memory

$FTN passes control from Monitor to the FORTRAN compiler
Upon termination of the compiler operation, control passes back to the Monitor

= if a$LOAD card is detected, the Monitor invokes the loader which loads the object code
into the space previously held by the FORTRAN compiler; the Monitor transfers control
to the object program

= if a$LOAD card is not detected, the Monitor transfers control to the object program

e Hardware Features (absent from early hardware)
o Memory Protection
= exclude user programs from writing in the Monitor memory space

o Timer
= prohibit any single job from executing beyond a specified time limit

o Privileged Instructions
= instructions provided for use by the Monitor code only
= processor encountering a privilege instruction in a user program, passes control to the
Monitor, which then executes an error interrupt

o Interrupts
= ability of the hardware to regain control from an executing program to process an
exceptional situation

Processor time
&
memory space

are both shared by the > Utilization of the system is improved

user program
&
Monitor

Multiprogrammed Batch Systems

e Idle Processor
CPU speed >> I/O device speed
single job available =@ CPU must wait for /O completion

@)
@)

e Multitasking

@)
@)

multiple tasks within the same program

processed concurrently

e Multiprogramming
multiple processes from multiple programs

@)
@)

processed concurrently

e Multiprogramming/Multitasking
o multiple jobs are available for execution, CPU
= encounters an I/O operation on current job
= switches to alternate job while waiting for I/O completion

CPU Job A Job B Job C Job A Job B Job C Job A idle

» time

1/0 Unit /0 A /0 B /0 C /0 A 110 B /10 C

e Hardware Requirements
o I/O Interrupt Processing Efficient Batch Processing
o Direct Memory Access (DMA)
o Memory Management

e Time-Sharing Systems Direct User Interaction
o Transaction Processing —reservation systems with the Executing Process
o Multiple Interactive Jobs
o OIS interleaves the execution of each user program in a short burst (Qquantum) of time

o Nusers = each user has effective control of a computer with slightly less than ; the
|

speed of the actual computer (overhead costs of context switching)

Scheduling
e Long-Term Scheduling (infrequent exedcution)
o determines which programs are admitted for processing
= allocated memory space
» allocated process control block (becomes a process)
= process control block placed in the Ready Queue
v" batch system = PCB held on disk in a disk queue
v some systems = PCB swapped-out to raw disk (no file management system)
o considers the degree of multiprogramming & the size of remaining free memory

e Medium-Term Scheduling
o manages degree of multiprocessing
o swaps jobs between raw disk memory
e Short-Term Scheduling (frequent execution)
o decides which job to execute next
o call the dispatcher, dispatcher executes the context switch between PCBs

Time-Sharing System - accepts all users until system is saturated; locks further entry
Algorithm for Accepting New Processes - balance CPU bound versus /0 Bound

Process States

Blocked

e New —admitted by Long-Term Scheduler, PCB allocated, OS needs to allocate memory, etc
e Ready — process is waiting access to processor, i.e., PCB is complete
e Running — process is executing
e Waiting — process is suspended, waiting for some system resource, e.g., /0O completion
e Halted — process has terminated, awaiting deallocation
Process

program code
contents of the process control block

Process Control Block

Identifier (unique integer)
State
Priority
PC contents
Memory Pointers — start & end locations of allocated memory space
Context Data — contents of all other registers
containing information important to the continued operation of the process
I/O Status Information
Accounting Information

Context Switch

current user process issues a service call, e.g., I/O request

o process is suspended until call is completed

current user process issues an interrupt, i.e., hardware-generated signal
o process is suspended until interrupt is processed

o privileged instruction, divide by zero, time quantum

interrupt event unrelated to current process

o process is suspended until interrupt is processed

OS receives control of the at the interrupt handler if an interrupt occurred
OS receives control of the at the service-call handler if an service call occurred

Process Scheduling

Long Term Queue

o disk resident

o list of candidate jobs waiting to be selected by Long-Term Scheduler
Short-Term Queue — Ready Queue

Multiple 1/0O Queues — one for each I/0O Device

I/O Scheduling —upon completion, OS moves process from queue to Ready Queue
Selects a waiting process and signals I/O device to start execution

Memory Management

Operating System

Process B

Process C

Process A

e Swapping
o Ready Queue may be empty — all the processes may be in the I/O queues
o Swap processes from the I/0 queues to
* an Intermediate Queue 0on disk
= swap space, i.e., raw disk — partition with no file system (faster swapping)
o OSselects a process from
* the Intermediate Queue to place in the Ready Queue
= swap space, i.e., raw disk — partition with no file system (faster swapping)

e Partitioning

Hol inM
o Fixed Size oles in Memory

Areas of memory unusable because of small size

= Equal Size
* Unequal Size)
o Variable Size Compaction

Moving processes to different memory locations
to consolidate holes

e Addresses
o Logical Address
*= |ocation relative to the beginning of the program (location zero)
= program instructions contain logical addresses
o Physical Address
= actual location in main memory
* base address
v" physical address of the current starting location of process in physical memory
= processor adds the base address to the logical address to obtain the physical address

Paging

pages — small fixed size chunks of program
frames — small fixed size chunks of memory
No external fragmentation of memory
Internal fragmentation = % of last frame
Page tables maintain list of frames in use
OS also keeps a list of free frames

same size

Demand Paging
e Each page of a process is allocated a frame in memory
only when it is referenced from a previous frame

e Page Fault
e Page Replacement Algorithms
e Trashing

o repeatedly throwing out pages just before they were to be referenced
e Real Memory

o actual physical memory
e Virtual Memory

o perceived memory requirements of entire process

o may be larger than size of real memory

o exists on disk storage

Page Table Structure

e Memory-Resident Page Table Location (starting position) is held in a register
e Logical Address [page #, offset]
e Page #indexes into page table producing the frame #
e Physical Address [frame #, offset]
e Memory Management Unit — hardware required
e One page table/ process
| v
1 30 13 30
4 I »| 123 13
12 123 14
13 123 15
123 123 16
123 123 17
123 18
VAX Architecture 123 19

e 2 GBytes of Virtual Memory (2*%)

e 512 byte pages (29

e page tables are stored in virtual memory, i.e., on disk
e page table length = page length

2 2% page table entries per process

Two-Level Paging Scheme
e Page Directory
o each entry points to a page table
o if (page table length = page length) && (directory length = page length) then
total pages = (page length)®

Inverted Page Table
e index the page table by frame number rather than by page number
e use hash function to map the page number into a location in the page table
o hash collisions are maintained in a linked list, i.e., a chain of entries
e size of an inverted page table << size of normal page table

A

page # Offset Translation
Lookaside
Buffer
<& miss -
< hit
! real address
! ¥
v, » Tag Remainder Cache
Page Table
— _— _
hit —
miss
Main
Memory
» -—>
Segmentation

e visible to programmer

allows programmer to view memory multiple address segments
segments are of dynamic size

each segment may be assigned access and usage rights

used to associate privilege & protection attributes to instructions & data
memory reference (segment #, offset)

e data structures may be assigned to a segment

OS may expand or shrink the size of the segment as needed
e segments may be changed & recompiled independently
e segments may be shared among different processes

Pentium Memory Management

Unsegmented Unpaged Memory — low-complexity high-performance controllers
Unsegmented Paged Memory — BSD (Berkeley Unix Distributions)

Segmented Unpaged Memory — predictable access times — embedded systems
Segmented Paged Memory — Unix System V Distributions

Segmentation
o virtual address (Pentium logical address)
= segment reference
v/ 2-bit protection mechanism
v' 14-bit segment specification
= offset 32-bit
o unsegmented memory = virtual memory = 2* bytes, i.e., 4 GBytes
o segmented memory = virtual memory = 2 bytes, i.e., 64 TBytes
= Yvirtual address space == global, i.e., used by all processes
= Yvirtual address space ==local, i.e., distinct for each process
o physical address (32-bit address) = 4 GBytes
o segment protection
= privilege levels

v' 0: kernel & memory management, protection, access control <—j most protected

v" 1:kernel =& remainder of OS modules

v’ 2:specialized application subsystems with their own security mechanisms, e.g.,
DBMS, Office Automation, Software Engineering Environments

v' 3: application programs -«—

|
*l least protected

= access attribute

Data Segment Privilege Level — Classification
Program Segment Privilege Level — Clearance

Process may only access Data Segments for
which its Clearance is lower than or equal to
(more privileged or same privilege) as the
Classification of the Data Segment

