
Operating Systems

Interface between User & Computer Hardware

Applications

Programs

Hardware

Operating

System

Utilities

Utilities

 Program Creation
o Editors
o Compilers
o Debuggers

 File Manipulation
o File Manipulation
o File Deletion

Program Execution

 Link-Loaders

 Run-Time Management

I/O Device Access & Control

 Storage File Format Structures

 Access Management

 Protection Schemes

Memory Resident File Access & Control

 Memory Resident File Format Structures

 Access Management

 Protection Schemes

System Access & Control

 System-Wide Access

 Resource Access

Error Detection & Response Mechanism

 Error Detection

 Error Correction

 Response to Unrecoverable Error

Accounting

 System Usage Collection

 System Performance Tuning

 Forecasting Enhancement Requirements

 Billing Users for Usage

Resource Manager

O/S Kernel

Portions of

the O/S

currently in

use

Portions of

Various

Application

Programs

Currently in use

I/O Controller

O/S Kernel

Portions of

the O/S

currently in

use

Portions of

Various

Application

Programs

Currently in use

O/S Kernel

Portions of

the O/S

currently in

use

I/O Controller

I/O Controller

Main

Memory

Processor

Processor

Processor

Processor

Printers,

Keyboards,

Monitors,

Cameras,

Etc.

Data

Operating

System

Application

Programs

Data

Storage

Computer

System

I/O

Devices

Operation

 Allocation of Main Memory is made jointly by both the O/S and Memory

Management Hardware

 O/S controls access to I/O devices by Application Programs

 O/S controls access to and use of files

 O/S controls access to and use of the processors, i.e., how much time can be

allocated to the execution of a particular Application Program

Classification of Operating Systems

Interactive O/S

 Keyboard & Monitor Access to O/S

 Immediate, i.e., Interactive, Communication with the Program during Execution Phase

Batch O/S

 Multiple Programs from a diverse set of Users are batched together and submitted for execution

 Results are printed for each User Program to be read offline

 Example: Batch Updating of Bank Account Master Files at the conclusion of a Transaction
Period (end of day)

Uniprogramming

 Single Program is loaded into Main Memory

 Processor concentrates on executing that program to completion

Multiprogramming

 Multiple Programs are loaded into Main Memory

 Processor executes the programs concurrently, i.e., switches between programs to maximize
processor utilization

Early Systems

 No Operating Systems

 Console
o Set of Display Lights to indicate the state of the processor
o Single Row of Display Lights used to indicate a single command written in binary numbers
o Set of Toggle Switches to set the Display Lights for a single command written in binary code

 Input Device – Card Reader

 Program Creation
o Written on Coding Pads
o Transcribed to Hollerith Cards via a Card Punch Machine (cast iron)
o Program in Hollerith Card Format read into the Main Memory by the use of a Card Reader
o Programs were written to absolute memory locations
o Entire program had to loaded into memory
o Program could be written to Magnetic Tape by the use of a Tape Drive in write mode
o Program could be retrieved from the magnetic tape by the use of a Tape Drive in read mode

 Program Execution
o Initiated by a special “GO” switch on the console
o Error condition – program halted; status could be investigated by inspecting registers and

main memory
o Normal Completion – output to printer or Card Punch

Muiltiprogramming

Batch

O/S

Uniprogramming

Interactive

O/S

Scheduling

 Sign Up Sheet
o Blocks of Time – 15 minutes
o waste of processing time – sign up for more time than required
o Inefficient use of time – need more time than allotted – forced to stop -- necessitates return

at a different time – results in inefficient use of programmers time

Later Early Systems

 Setup Time
o Single Program (job)
o Loading Compiler
o Loading High Level language Source Code
o Saving the Object Code after compilation
o Loading & Linking Program Object Code and Library Function Object Codes

 Serial Processing – users had access to the computer System in Series

 Software Tools
o Libraries of Common Functions
o Linkers
o Loaders
o Debuggers
o I/O Driver Routines

Simple Batch Operating Systems (Monitors)

 User
o does not have direct access to the Computer System
o submits job to an operator (cards/tape)

 Operator
o batches jobs together sequentially
o submits entire batch to monitor for processing

 Monitor controls the sequence of events

Memory Map
of a Resident
Monitor

Loading/Unloading

 Magnetic Tape Drives

 Card Readers

Attaching/Detaching

 Magnetic Tape Drives

 Card Readers

Resident Monitor – portion of the Monitor that must always be in the main memory

Non-resident Monitor – portion of the Monitor that remains in storage until required
o Utilities
o Common Functions

Resident Monitor determines when to read in a new job

Monitor
o allocates memory for a new job
o reads a new job in from storage
o inserts control information at end of job requiring job to restore control to the

Monitor
o passes control to the new job
o at the end of the job, control passes back to the Resident Monitor

Monitor prints results of the previous execution for the User

Monitor schedules a new job

Interrupt Processing

Device Drivers

Job Sequencing

Command Language

Interpreter

User Program Area

 Processor (at a certain point in time)
o is executing instructions from a portion of the Monitor residing in Main Memory that cause

the next job to be read into Main Memory
o encounters a branch instruction that leads the processor to start executing the new job

o encounters either an end statement or an error condition causing the processor to fetch its

next instruction from specified locations in the Monitor code

 Job Control Language (JCL)
o provides control instructions to the monitor
o FORTRAN

 each instruction and each data item is coded on a separate
 Hollerith card or
 record on tape

 $JOB -- indicates the beginning of a new job
 $FTN -- specifies which FORTRAN compiler should be loaded

 selected compiler produces object code – object code stored
 in memory “compile, load & go” operation
 on tape $LOAD card is required to place code in memory

 if a $LOAD card is detected, the Monitor invokes the loader which loads the object code
into the space previously held by the FORTRAN compiler; the Monitor transfers control
to the object program

 if a $LOAD card is not detected, the Monitor transfers control to the object program

 Hardware Features (absent from early hardware)
o Memory Protection

 exclude user programs from writing in the Monitor memory space

o Timer
 prohibit any single job from executing beyond a specified time limit

o Privileged Instructions

 instructions provided for use by the Monitor code only
 processor encountering a privilege instruction in a user program, passes control to the

Monitor, which then executes an error interrupt

o Interrupts
 ability of the hardware to regain control from an executing program to process an

exceptional situation

Control is Passed to a Job

 Processor is fetching and executing instructions from the user code

Control is Returned to the Monitor

 Processor is fetching and executing instructions from the user code

$FTN passes control from Monitor to the FORTRAN compiler
Upon termination of the compiler operation, control passes back to the Monitor

Processor time
&
memory space

 are both shared by the

user program
&
Monitor

Utilization of the system is improved

Multiprogrammed Batch Systems

 Idle Processor
o CPU speed >> I/O device speed
o single job available CPU must wait for I/O completion

 Multitasking
o multiple tasks within the same program
o processed concurrently

 Multiprogramming
o multiple processes from multiple programs
o processed concurrently

 Multiprogramming/Multitasking
o multiple jobs are available for execution, CPU

 encounters an I/O operation on current job
 switches to alternate job while waiting for I/O completion

 Hardware Requirements
o I/O Interrupt Processing
o Direct Memory Access (DMA)
o Memory Management

 Time-Sharing Systems
o Transaction Processing – reservation systems
o Multiple Interactive Jobs
o O/S interleaves the execution of each user program in a short burst (quantum) of time

o N users each user has effective control of a computer with slightly less than the

speed of the actual computer (overhead costs of context switching)

Scheduling

 Long-Term Scheduling (infrequent exedcution)
o determines which programs are admitted for processing

 allocated memory space
 allocated process control block (becomes a process)
 process control block placed in the Ready Queue

 batch system PCB held on disk in a disk queue
 some systems PCB swapped-out to raw disk (no file management system)

o considers the degree of multiprogramming & the size of remaining free memory

 Medium-Term Scheduling
o manages degree of multiprocessing
o swaps jobs between raw disk memory

 Short-Term Scheduling (frequent execution)
o decides which job to execute next
o call the dispatcher, dispatcher executes the context switch between PCBs

Job A

time

Job B Job C CPU

I/O Unit I/O A I/O B I/O C

Job A Job B Job C

I/O A I/O B

Job A

I/O C

idle

Efficient Batch Processing

Direct User Interaction

with the Executing Process

Time-Sharing System – accepts all users until system is saturated; locks further entry

Algorithm for Accepting New Processes – balance CPU bound versus I/O Bound

Process States

 New – admitted by Long-Term Scheduler, PCB allocated, OS needs to allocate memory, etc

 Ready – process is waiting access to processor, i.e., PCB is complete

 Running – process is executing

 Waiting – process is suspended, waiting for some system resource, e.g., I/O completion

 Halted – process has terminated, awaiting deallocation

Process

 program code

 contents of the process control block

Process Control Block

 Identifier (unique integer)

 State

 Priority

 PC contents

 Memory Pointers – start & end locations of allocated memory space

 Context Data – contents of all other registers
containing information important to the continued operation of the process

 I/O Status Information

 Accounting Information

Context Switch

 current user process issues a service call, e.g., I/O request
o process is suspended until call is completed

 current user process issues an interrupt, i.e., hardware-generated signal
o process is suspended until interrupt is processed
o privileged instruction, divide by zero, time quantum

 interrupt event unrelated to current process
o process is suspended until interrupt is processed

 OS receives control of the at the interrupt handler if an interrupt occurred

 OS receives control of the at the service-call handler if an service call occurred

Process Scheduling

 Long Term Queue
o disk resident
o list of candidate jobs waiting to be selected by Long-Term Scheduler

 Short-Term Queue – Ready Queue

 Multiple I/O Queues – one for each I/O Device

 I/O Scheduling – upon completion, OS moves process from queue to Ready Queue
 Selects a waiting process and signals I/O device to start execution

New Ready

Blocked

Running Halt

Memory Management

 Swapping
o Ready Queue may be empty – all the processes may be in the I/O queues
o Swap processes from the I/O queues to

 an Intermediate Queue on disk

 swap space, i.e., raw disk – partition with no file system (faster swapping)
o OS selects a process from

 the Intermediate Queue to place in the Ready Queue

 swap space, i.e., raw disk – partition with no file system (faster swapping)

 Partitioning
o Fixed Size

 Equal Size
 Unequal Size

o Variable Size

 Addresses
o Logical Address

 location relative to the beginning of the program (location zero)
 program instructions contain logical addresses

o Physical Address
 actual location in main memory

 base address

 physical address of the current starting location of process in physical memory

 processor adds the base address to the logical address to obtain the physical address

Operating System

Process A

Process B

Process C

Holes in Memory

Areas of memory unusable because of small size

Compaction

Moving processes to different memory locations

to consolidate holes

Paging

 pages – small fixed size chunks of program

 frames – small fixed size chunks of memory

 No external fragmentation of memory

 Internal fragmentation ½ of last frame

 Page tables maintain list of frames in use

 OS also keeps a list of free frames

Demand Paging

 Each page of a process is allocated a frame in memory
only when it is referenced from a previous frame

 Page Fault

 Page Replacement Algorithms

 Trashing
o repeatedly throwing out pages just before they were to be referenced

 Real Memory
o actual physical memory

 Virtual Memory
o perceived memory requirements of entire process
o may be larger than size of real memory
o exists on disk storage

Page Table Structure

 Memory-Resident Page Table Location (starting position) is held in a register

 Logical Address [page #, offset]

 Page # indexes into page table producing the frame #

 Physical Address [frame #, offset]

 Memory Management Unit – hardware required

 One page table / process

VAX Architecture

 2 GBytes of Virtual Memory (2
31

)

 512 byte pages (2
9
)

 page tables are stored in virtual memory, i.e., on disk

 page table length page length

Two-Level Paging Scheme

 Page Directory
o each entry points to a page table

o if (page table length page length) && (directory length page length) then

total pages (page length)
2

same size

1 13

12

30

13

123

123

30

123

123

123

123

123

123

123

13

17

14

15

16

19

18

 2
22

 page table entries per process

Inverted Page Table

 index the page table by frame number rather than by page number

 use hash function to map the page number into a location in the page table

 hash collisions are maintained in a linked list, i.e., a chain of entries

 size of an inverted page table << size of normal page table

 miss
 real address

 hit

Segmentation

 visible to programmer

 allows programmer to view memory multiple address segments

 segments are of dynamic size

 each segment may be assigned access and usage rights

 used to associate privilege & protection attributes to instructions & data

 memory reference (segment #, offset)

 data structures may be assigned to a segment
OS may expand or shrink the size of the segment as needed

 segments may be changed & recompiled independently

 segments may be shared among different processes

Cache

 hit

miss

Translation

Lookaside

Buffer

 hit

page # Offset

Tag Remainder

Page Table

Main

Memory

Main

Memory

Pentium Memory Management

 Unsegmented Unpaged Memory – low-complexity high-performance controllers

 Unsegmented Paged Memory – BSD (Berkeley Unix Distributions)

 Segmented Unpaged Memory – predictable access times – embedded systems

 Segmented Paged Memory – Unix System V Distributions

 Segmentation

o virtual address (Pentium logical address)
 segment reference

 2-bit protection mechanism
 14-bit segment specification

 offset 32-bit
o unsegmented memory virtual memory = 2

32
 bytes, i.e., 4 GBytes

o segmented memory virtual memory = 2
46

 bytes, i.e., 64 TBytes
 ½ virtual address space == global, i.e., used by all processes
 ½ virtual address space == local, i.e., distinct for each process

o physical address (32-bit address) 4 GBytes
o segment protection

 privilege levels
 0 : kernel memory management, protection, access control
 1 : kernel remainder of OS modules
 2 : specialized application subsystems with their own security mechanisms, e.g.,

 DBMS, Office Automation, Software Engineering Environments
 3 : application programs

 access attribute
o

most protected

least protected

Data Segment Privilege Level – Classification
Program Segment Privilege Level – Clearance

Process may only access Data Segments for
which its Clearance is lower than or equal to
(more privileged or same privilege) as the
Classification of the Data Segment

