Computer Organization

1. History

Zeroth Generation – Mechanical Computation (1642-1945)

- Blaise Pascal calculator [+, -] 1642
- Wilhelm von Leibniz calculator [+, -, *, +] ≈1670 1680
- Charles Babbage
 - o difference engine [+, −] ≈1820 − 1830
 naval navigation tables
 - single algorithm -- finite differences using polynomials
 - o analytical engine [+, −, *, +]
 - memory (store)
 - computation unit (mill)
 - input unit (punched card reader)
 - output section (card punch & printer)
- Konrad Zuse electromagnetic relays 1930 1944
- John Atanasoff Iowa State University
 - o binary number system
 - o electromagnetic relays
 - memory capacitors
 - differential equations
- George Stibbitz Bell Labs
- Howard Aiken MIT 1944
 - o Mark I based on Babbage's analytical engine design
 - o electromagnetic relays

First Generation – Vacuum Tubes (1945-1955)

- ENIGMA encryption machine mechanical device Germany
- COLOSSUS vacuum tubes Alan Turing Great Britain -- 1943
 - o world's first electronic digital computer
 - logic machine
 - o encryption machine
- ENIAC Electronic Numerical Integrator & Computer USA 1946
 - Eckert & Mauchley University of Pennsylvania
 - 18,000 vacuum tubes
 - o 1500 relays
 - o artillery range tables US Army
 - programming
 - connect sockets with jumper cables
 - set 6000 multi-position switches

- EDSAC Cambridge University, Great Britain -- Maurice Wilkes 1949
- JOHNIAC Rand CorporationILLIAC University Illinois
- MANIAC Los Alamos LaboratoryWEIZAC Weizac Institute, Isreal
- EDVAC Electronic Discrete Variable Automatic Computer
 - J. Presper Eckert
 - John Mauchley
- Eckert-Mauchley Computer Corporation
 - Remington-Rand
 - o Sperry-Rand
 - Sperry-Univac
 - Unisys
- Honeywell Company of Minneapolis vs. Sperry Rand Corporation
 - Legal Decision over the "ENIAC PATENTS" invalidated the patents on the ENIAC held by the Sperry Rand Corporation because the basic ENIAC ideas of J. Presper Eckert and John Mauchly were "derived from John Atanasoff's prior work
 - http://jva.cs.iastate.edu/courtcase.php
 - The decision freed the computer industry from the constraints of obtaining license agreements from Sperry-Rand and its descendants
- von Neumann machine design
 - o stored program concept
 - o parallel binary arithmetic
- IAS -- Institute of Advanced Studies -- Princeton University
 Herman Goldstine & John von Neumann
 - o von Neumann design
 - memory
 - o ALR
 - accumulator
 - control unit
 - o input
 - o output

- Whirlwind I MIT
 - o real-time control
 - o magnetic core memory Jay Forrester
- UNIVAC I 1951 first commercial computer sold to General Electric
- IBM 701 -- 1953
- IBM 704 1956
 - o scientific computer
 - 4K core memory
 - o 36 bit instructions
 - o floating point hardware
- IBM 709 1958
 - scientific computer last vacuum tube machine
- 0

Second Generation – Transistors (1955-1965)

- transistor -- Bell Labs 1948
 - John Bardeen
 - Walter Brattain
 - William Shockley
 - o 1956 Nobel Prize Physics
- TX-0 Transistorized eXperimental computer 0
 MIT Lincoln Laboratory
- Digital Equipment Corporation 1957
 - Kenneth Olson MIT engineer -- design similar to TX-0
 - o PDP-1 1961
 - o visual display screen
 - o MIT students -- video games
 - PDP-8 bus architecture
- IBM 7090 transistorized version of 709
- IBM 7094 last of the ENIAC type machines
 - o parallel binary arithmetic
 - 36 bit registers
- IBM 1401 business machine
 - o no registers
 - o serial decimal arithmetic
 - o fast I/O
 - byte 6 bit character, administrative bit, end-of-word bit
 - variable length words
- Control Data Corporation US Navy
 - William Norris
 - Seymour Cray
 - o CDC 6600 1964
 - parallel processing -- multiple functional units
 - addition
 - multiplication
 - division
 - central CPU number crunching
 - 10 peripheral CPU's job control, I/O, etc
 - o CDC 7600
 - o Cray-1
- Burroughs B5000
 - o native language Algol 60
 - o stack architecture

Third Generation – Integrated Circuits (1965-1980)

silicon integrated circuit – Robert Noyce 1958

- IBM System/360 Family
 - o integrated circuits
 - o single assembly language for family
 - o 360 Model 30 accounting machine
 - 360 Model 75 scientific machine
 - multiprogramming multiple programs in memory
 - microprogrammed
 - 360 instruction set
 - 1401 instruction set
 - 7094 instructions set
 - o emulation of IBM 1401, IBM 7094
 - o 16 32-bit registers binary arithmetic
 - word-oriented registers
 - byte-oriented memory
 - o instructions move variable-sized records in memory
 - o 16MB address space
- IBM System/370 Family
- IBM System/4300 Family
- IBM System/3080 Family
- IBM System/3090 Family

all these systems have the same architecture as the original System/360 Family

- CDC PDP-11 Series
 - 16-bit system
 - word-oriented registers
 - byte-oriented memory
 - o little brother to IBM 360 series

Fourth Generation – Very Large Scale Integration (1980-?)

VLSI -- Very Large Scale Integration personal computers

- Intel 8080 chip CP/M Operating System Gary Kildall
- IBM Personal Computer Phillip Estridge 1981
 - o published complete plans circuit diagrams
 - o MS-DOS
 - OS/2 graphical user interface
 - IBM Microsoft divorce
- Clone Market
- RISC Architecture
- Superscalar Architectures

Moore's Law empirical observation

- Gordon Moore Intel 1965
- new generation memory chips every 3 years
- new generation memory size = 4 * old generation memory size
- number transistors per chip doubles every 18 months

Richard Hamming Bell Labs

- $\Delta \uparrow$ quantity * 10 \Rightarrow $\Delta \uparrow$ quality
 - ∆↑ computer power, constant price
 - ∆↓ price, constant computer power

disposable computers – greeting cards embedded computers – control systems

- personal computers workstations
- workstation network workstation cluster mini-supercomputers
- mainframes
 - o speed ≈ powerful servers
 - vast disk farms
 - mainframe I/O capacity >> server system I/O capacity
- supercomputers
 - o enormously fast CPU's
 - huge memory
 - very fast disk drives
 - o highly parallel machines

Pentium II

- Intel Corporation 1968 memory chips
 - o Robert Noyce silicon integrated circuit
 - Gordon Moore
 - Arthur Rock venture capitalist
- Ted Hoff placed CPU on a chip
 - Intel 4004 CPU Chip 1970
 - o Intel 8080 CPU Chip 1974
 - Intel 8086 CPU Chip 1978
 Intel 8088 CPU Chip
 16-bit CPU, 16-bit bus, 1MB limit
 16-bit CPU, 8-bit bus, 1MB limit
 - Intel 80286 CPU Chip
 Intel 80386 CPU Chip
 Intel 80486 CPU Chip
 Intel 80486 CPU Chip
 32-bit CPU, 32-bit bus
 32-bit CPU, 32-bit bus

8Kb cache memory, floating point unit,

multiprocessor support,

one internal pipeline

o Intel Pentium CPU Chip 32-bit CPU, 32-bit bus,

two internal pipelines

o Intel Pentium Pro 32-bit CPU, 32-bit bus,

two level cache memory five instruction vectors

o Intel Pentium II 32-bit CPU, 32-bit bus,

MMX multimedia extensions

o Intel Celeron low priced, low performance

version of Pentium II

Intel Xeon high-end version of Pentium II

larger cache, faster bus,

better multiprocessor support

UltraSPARC II

Sun Microsystems 1982

- Andy Bechtolsheim
 - SUN-1 Stanford University Network
 - o Motorola 68020 CPU
- Vinod Khosla
- Scott McNealy
- Bill Joy
- Sun-1, Sun-2, Sun-3 Workstations
 - Ethernet Connection
 - o TCP/IP Software -- ARPANET
- Sun-4 Workstation -- SPARC Scalable Processor ARChitecture
 - MicroSPARC
 - o HyperSPARC
 - SuperSPARC
 - TurboSPARC
- UltraSPARC I 64-bit registers, 64-bit addresses 1995
 - o VIS Visual instruction Set
 - o images, video, multimedia
- UltraSPARC II
- UltraSPARC III

picoJava II

Java

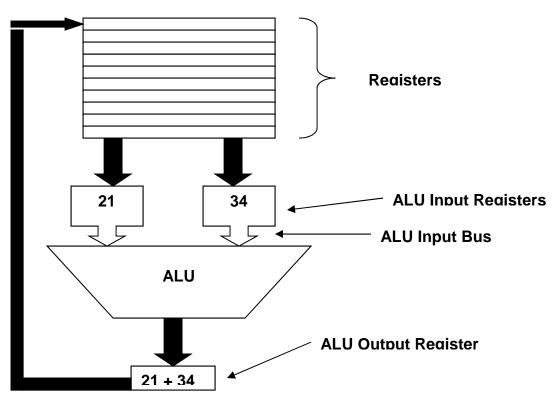
- JVM Java Virtual Machine internet secure
- object-oriented

java compiler: Java source code →JVM bytecode
 JVM interpreter: JVM bytecode →executable code

browsers

- JVM interpreter
- JVM JIT Compiler Just In Time target machine compiles JVM bytecode
- hardware JVM chips directly execute JVM binary code
 - JVM interpreter not required
 - JIT Compiler not required
 - o embedded systems
 - o dynamic modification of functionality
 - o Sun microJava 701

Alternative Architectures


- CISC architecture implemented with superscalar technology
- RISC architecture implemented with superscalar technology
- dedicated Java chip for use in embedded systems

2. Computer Systems Organization

Processors, i.e., CPUs

- Control Unit
- ALU
- Register Set
- Internal Buses

von Neumann CPU architecture

register-memory instructions

register-register instructions

data path cycle process

- access two operands in registers
- insert them into the ALU
- store result in register set

Basic Machine Cycle -- von Neumann

- fetch next instruction from memory; place into IR
- increment PC
- determine instruction type
- if instruction references memory operands, determine memory location
- if necessary, fetch operands into CPU registers
- execute instruction

<u>Interpreter</u>

program that

- runs on a particular machine hardware A, and
- implements the Basic Machine Cycle for a given language L, i.e., L is executed on machine hardware A

Implementation

- specify machine language L for computer design A
- construct hardware processor A to execute instructions, or
- write interpreter for language L that runs on machine hardware B

if the machine hardware B with the native language LB

has a large instruction set with many complicated instructions and if the machine hardware A and its native language L_A has a simple instruction set

then

it may be less expensive to write an interpreter for the language L_B that would run on the machine hardware A than to actually construct the hardware for B; the trade-off is that the language L_B using the interpreter to execute on machine A will not execute as fast as the same language L_B executing directly on hardware for B

<u>CISC – Complex Instruction Set Computer</u>

complex instructions → faster program execution

- fewer fetch cycles
- overlapped or parallel execution on different hardware

thus

high performance systems accumulated many complex instructions

IBM Family Architecture

- many different types of machines with different capabilities
- maintain a single language L across all the different machines
- implement the language L using different implementation strategies on different machines, i.e., **interpretation**
- one architecture

one architecture across many diverse hardware platforms

low cost systems

- · cost outweighs performance
- semiconductor chip technology
- interpreter based design

DEC VAX

- ≈ 600 instructions → large number of marginal instructions
- 200 ways to specify operands
- all machines used interpretation; no direct execution
- no high-performance model

Motorola 68000

large interpreted instruction set

control store

- fast read-only memories
- hold interpreter

microinstruction

interpreter instruction

RISC

- Reduced Instruction Set Computers
- direct execution of instruction set
- backward compatibility not required new instruction set possible
- instruction set selected that would maximize performance
- instructions with high issue rate -- that could be started quickly

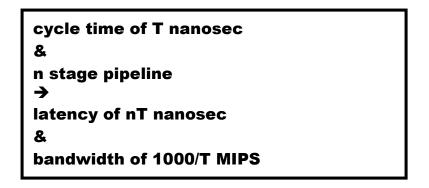
main memory speed ≈ read-only control store memory speeds

RISC DEC Alpha

CISC Intel Pentium

- Intel 486 CPU contains RISC core
 - o executes simple instructions in a single data path -- RISC
 - interprets complex instructions -- CISC
- backward compatibility software market

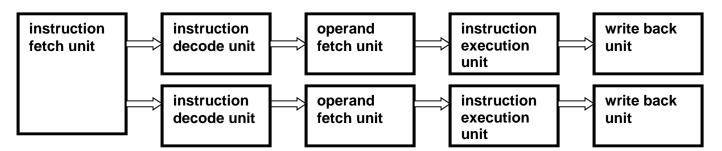
Design Principles


- common instructions are executed directly on the hardware
- complex instructions, rarely used, may be interpreted
- maximize rate of instruction issuance
 - o instructions are encountered in program order
 - o instructions are not always issued in program order
 - o instructions need not finish in program order
- instructions should be easy to decode
 - o determine required resources
 - o fixed length, regular, small number of fields
- limit memory references to LOAD & STORE instructions
- require operands of most instructions to come from registers
- provide many registers minimize memory references

Instruction Level Parallelism

- IBM Stretch Computer
- fetch instructions from memory in advance
- store them in a set of registers prefetch buffer

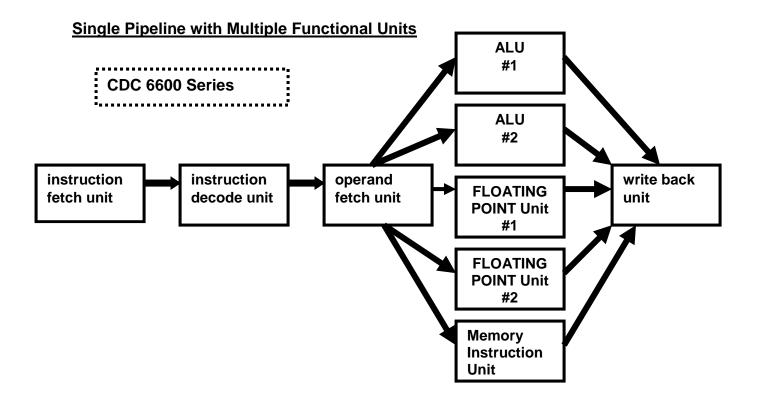
<u>Pipelining</u>


- divide instruction execution into stages
- each stage of execution is handled by a dedicated hardware unit
 - o instruction fetch unit
 - instruction decode unit
 - o operand fetch unit
 - o instruction execution unit
 - o write back unit
- latency vs. processor bandwidth trade-off

Superscalar Architecture

Dual Pipeline Architecture

- instruction fetch unit
- fetches pairs of instructions


instructions must not have resource conflicts hardware detection & elimination of conflicts

Intel 486

• one pipeline

Pentium

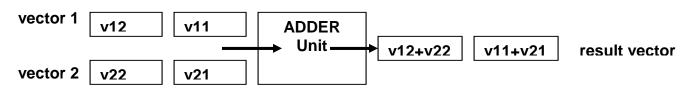
- two pipelines (five-stage)
- u pipeline -- primary pipeline
 - execute arbitrary instruction]
- v pipeline secondary pipeline
 - o execute simple integer instructions
- instructions were always executed in order

transmission rates
copper wire – optical fiber
20 cm/nanosecond

instruction level parallelism
execution speed improvement – maximum
five fold → ten fold

Processor Level Parallelism

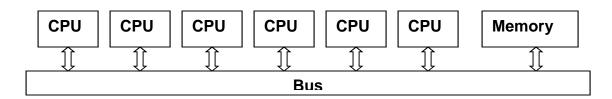
Array Computer


University Illinois ILLIAC IV Computer

- single control unit
- large number of identical processors
- different data sets assigned to different processors
- each processor performs the same sequence of instructions on its respective data set

Vector Processor

- single control unit
- vector register
 - single instruction loads vector from memory
 - o single instruction saves vector to memory


Cray Research Seymour Cray Cray-1, -2, -3, etc

- executes instruction on sequential pairs of data elements
- vector processor can be incorporated into conventional processor

<u>Multiprocessors</u>

- multiple CPUs sharing common memory
- memory bus contention

Multicomputers

- multiple computers, i.e., CPUs with independent memory
- message passing between computers

Memory

bit storage location 0/1

byte --8 bits word -- n bytes

BCD

addresses

- m bits ←→ maximum number of directly addressable cells == 2^m
- n cells ←→ addresses range from 0 to n-1
- cell contains k bits ←→ 2^k different bit combinations ←→ 2^k different values represented

address length

- determines maximum number of directly addressable cells in memory
- number of bits per cell is independent of address length

Byte Ordering

bytes in a word can be numbered from

- left to right 12345678 ←→ big endian system or
- right to left 8 7 6 5 4 3 2 1 ←→ little endian system

Error Correcting Codes

n-bit codeword

- m-bit word
- r-check bits (redundant information)

Hamming Distance

- number of differing bits between two words
 - o compute exclusive or
 - o count number of bits that equal 1 in the result

Two words with Hamming distance d between them

d single-bit errors must have occurred to convert one into the other

- error-detecting & error-correcting properties
 - depend upon the Hamming distance
- distance d+1 code ←→ detects d single-bit errors
 - parity bit -- even/odd -- hamming distance 2

Selected Error Correcting Code

- bit 1: leftmost high-order bit
- bit n == 2^k for some integer k ←→ parity bit
- bit n != 2^k for any integer k ←→ data bit

21 bit codeword \longrightarrow 16 bit word + 5 parity bits bit 1 checks 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 bit 2 checks 2*1, 2*1+1, 2*3, 2*3+1, 2*5, 2*5+1, 2*7, 2*7+1, 2*9, 2*9+1 bit 4 checks 4*1, 4*1+1, 4*1+2, 4*1+3, 4*3, 4*3+1, 4*3+2, 4*3+3, 4*5, 4*5+1 bit 8 checks 8*1, 8*1+1, 8*1+2, 8*1+3, 8*1+4, 8*1+5, 8*1+6, 8*1+7 bit 16 checks 16*1, 16*1+1, 16*1+2, 16*1+3, 16*1+4, 16*1+5

3. Peripherals

Memory Hierarchy

<u>Media</u>	<u>Speed</u>	<u>Volume</u>
CPU Registers Cache Memory Main Memory	nanosec 5-10 nanosec 10-50 nanosec 50-100	128 bytes megabytes 1-5 megabytes 10-10K
Magnetic Disk Tape Storage	millisec 10 ⁺ seconds	gigabytes 2-50 unlimited
Optical Disk	seconds	unlimited

Magnetic Disk Storage

tracks

sectors (fixed-length)

- preamble
- 512 data bytes
- ECC Hamming Code; Reed-Solomon Code
- intersector gap

cylinders

zones

- 10-30 per disk
- sectors per track depend upon zone

unformatted capacity = preambles + ECC + gaps + formatted capacity

15% total capacity used for

- preambles
- ECC
- intersector gaps

seek time 5 – 15 millisec rotational latency 4 – 8 millisec transfer rate 5 – 20 MB/sec

audio-visual disk drives

• do not recalibrate their positioning mechanisms

disk controller (CPU)

- accept O/S commands, e.g., READ, WRITE, FORMAT
- convert 8-bit byte into serial bit stream

IDE Disks

O/S places command parameters in CPU registers
BIOS (Basic Input Output System) ← ROM
BIOS issues machine instructions to load disk controller registers
controller specifies head, cylinder, & sector addresses

IDE limits:

heads 16cylinders 63sectors 1024

EIDE Disks

LBA (Logical Block Addressing)

• sectors 2²⁴

controller converts

LBA addresses

to

head, sector, & cylinder addresses

SCSI Disks

Unix Workstations Macintosh Systems Intel Network Servers

- SCSI Controller
- Bus
- peripheral SCSI Devices (7)
- daisy chain
- terminate last device

concurrent operation

- SCSI controllers
- peripheral SCSI devices

action initiators

- SCSI controllers
- peripheral SCSI devices

action recipients

- SCSI controllers
- peripheral SCSI devices

RAID Redundant Array of inexpensive Disks versus SLED -- Single Large Expensive Disk

parallel I/O operations
Wide SCSI Controller + 15 SCSI Disks

Raid Level 0

distribute data across multiple disks k sectors of virtual disk → strip on actual disk

RAID disks MTF 20,000 hours → RAID failure every 5000 hours SLED failure every 20,000 hours operational degradation

Raid Level 1

Raid Level 0 System with Mirrored Backup, i.e., redundancy

write → primary disk & backup disk speed == SLED read ← primary disk | backup disk speed == 2X SLED

excellent fault tolerance

Raid Level 2

byte (8-bit) → nibble1 + nibble2
nibble1 + 3 parity bits → word (7-bits): parity bits 1, 2, 4
nibble2 + 3 parity bits → word (7-bits): parity bits 1, 2, 4
rotationally synchronized drives
distribute one bit per word on each of seven different drives

very high data rate separate I/O requests per second == SLED large overhead

The Thinking Machine CM-2
32-bit data words + 6 parity bits → 38-bit Hamming word
38-bit Hamming word + 1 parity bit for resulting word
distributed over 39 disk drives
overhead 19%

Raid Level 3

data word + parity bit rotationally synchronized drives distribute one bit per word on each of several different drives write parity bit on parity bit drive

very high data rate separate I/O requests per second == SLED

disk crash

"bad" bit position known assume bit == 0; compute parity parity error → bit = 1

Raid Level 4

Raid Level 0 System with Parity Disk

parity strip ← ^(data strip from each data disk)
data change → read n drives, recalculate parity,
write at least two drives
heavy load on parity drive → bottleneck

Raid Level 5

Raid Level 4 System without Parity Disk

distribute parity bit across data disks (round robin) disk crash → reconstructing drive contents complex process

CD-ROM Storage

potential enormous capacity

Philips LaserVision

Red Book

audio CD
polycarbonate resin + reflective aluminum
low-power laser diode
pits -- height ¼ wavelength of laser light
lands
light reflecting off pit

• ½ wavelength out of phase with light reflecting off land

pit – land transition → 1 land – pit transition → 1

transition absence

0

continuous spiral

starts at center, progresses to outer edge rotational rate continuously reduced varies from 530 to 200 RPM

Magnetic Disks 3600 - 7200 RPM

8-bit byte + 6-bits error code → 14-bit symbol

frame 588-bits

- 24 data byte symbols
- 18 error correction & control symbols
- 192 data bits; 24 data bytes
- 396 error correction & control bits

Yellow Book

CD-ROM's (Compact Disc-Read Only Memory)

8-bit byte + 6-bits error code → 14-bit symbol

frame 588-bits

- 24 data byte symbols
- 18 error correction & control symbols
- 192 data bits; 24 data bytes
- 396 error correction & control bits

CD-ROM sector

98 frames

16-bit preamble

- sector recognition code (12 bytes)
 00 FF FF FF FF FF FF FF FF FF 00
- sector number (3 bytes)
- mode (1 byte)
 - o mode1
 - 16 byte preamble
 - 2048 data bytes
 - 288 byte error correcting code cross-interleaved Reed-Solomon code

Error Correction

- within symbol
- within frame
- within CD-ROM sector

98 frames (7203 bytes) → 2048 data bytes 28% efficiency

- o mode2
 - 2336 byte data field
 - no error correction
 - audio-video

Green Book

graphics

interleave audio, video, data in same sector

High Sierra File System

Level 1

- MS-DOS file name convention
- directory depth limited to 8
- contiguous files

Level 2

• file name convention 32 characters

Level 3

• noncontiguous files

Rock Ridge Extensions

- Unix naming convention
- UID's
- GID's
- symbolic links

CD-Recordable Storage CD-R

laser guide – 0.6mm groove gold reflective surface dve

- cyanine -- green
- pthalocyanine -- yellowish orange
- initial state -- transparent

write (8-16mW)

- changes molecular structure
- produces color

read (0.5mW)

• detects color change

Orange Book

CD-ROM XA -- incremental writing

CD-ROM track

- group of consecutive sectors written at same time
- VTOC (Volume Table of Contents)
- O/S searches for most recent VTOC current status
- file deletion
 - o file is not listed in most recent VTOC
 - o illusion of being deleted
- session
 - o group of tracks

each track must be written in one contiguous operation without stopping

<u>CD-Rewritables Storage</u> CD-RW

recording layer -- alloy

- o silver
- indium
- antimony
- tellurium

stable states

- o crystalline high reflectivity
- o amorphous low reflectivity

transitions

- high power: crystalline state → amorphous state (pit)
- o medium power: reforms crystalline state (land)
- o low power: state can be sensed without state transition

DVD Digital Versatile Disk

CD media

- smaller pits
- tighter spiral
- red laser (supermarket checkout stands) capacity increase 7X CD-ROM's capacity 4.7GB second laser required to read CD-ROMs

formats

single-sided, single-layer	4.7 GB
single-sided, dual-layer	8.5 GB
double-sided, single-layer	9.4 GB
double-sided, dual-layer	17.0 GB

semireflective layer
reflective layer
blank substrate layer
reflective layer
semireflective layer

consortium of consumer electronics companies computer & telecommunications industries were not invited

intentional incompatibility -- different standards

- US
- Europe
- Asia

video-on-demand ← cable systems

Input/Output

motherboard

bus (etched into motherboard)

- high speed
- low speed

I/O Device

- controller -- etched into motherboard | board plugged into motherboard
- I/O unit (e.g., disk drive)
- connection cable

controller ← device

data passed via a serial bit stream

DMA Direct Memory Access

- controller accesses memory without CPU intervention
- interrupts upon completion

CPU -- I/O Controller Contention

bus arbiter

preference: I/O devices >> CPU

cycle stealing

ISA Bus -- Industry Standard Architecture Bus

EISA Bus -- Extended ISA Bus

PCI -- Peripheral Component Interconnect Bus

Keyboard

- key depressed → interrupt → interrupt handler reads hardware register obtains key code
- key released → interrupt → interrupt handler reads hardware register obtains key code

CRT Monitors Cathode Ray Tube

- raster scan device
- full screen image -- repainted 30-60 times per second
- grid voltage controls electron flow
- screen glows when hit by electrons

Flat Panel Displays

LCD Liquid Crystal Display

- viscous organic molecules
- flow like liquid
- crystalline spatial structure
- electrical field changes molecular alignment; i.e., optical properties
 - NT -- Twisted Nematic Display
 - rear plate
 - horizontal grooves
 - horizontal polaroid
 - front plate
 - vertical grooves
 - vertical polaroid
 - light rotates between rear projection plate and front plate
 - absence of electric field → screen uniformly bright
 - voltage applied to selected portions of the plate twisted structure destroyed → blocking light
 - passive matrix display
 - active matrix display

Character Mapped Terminals

array of characters serial communications board -- video board video memory

• [character byte; attribute byte] fetch [char; attr] from RAM generate analog signal that controls electron beam scanning

Bit Mapped Terminals

array of pixels supports windows considerable amount of video RAM

true color

- 3 bytes per pixel color palette -- hardware table
- 256 entries -- 24-bit RGB value
- 8 bit index per pixel
 RGB -- red, green, blue

performance

- placing data into video RAM uses system bus
- system degradation

RS-232-C Terminals

EIA Standard

UART Universal Asynchronous Receiver Transmitter

parallel to serial conversion

• byte → start bit + data bit stream + stop bit

serial to parallel conversion

start bit + data bit stream + stop bit → byte

Printers

- matrix printer
- inkjet printers
- laser printers
 - print engine
 - memory x MB
 - CPU
 - Adobe PostScript Language
- halftone -- shades of gray
- color printers
 - CYMKcyan, yellow, magenta, black
 - gamut -- set of colors possible to produce
- ink-jet printers
 - dye-based ink -- fades under ultraviolet light
 - pigment-based ink -- particles clog nozzles
- solid ink printers
 - hot ink reservoirs
 - startup times -- 10 minutes
- color laser printer
 - huge memory requirements
 - stable images
- wax printer
- wide ribbon -- 4 color wax
- costly consumables
- dye sublimation printer
- thermal print head
- dyes vaporized; absorbed onto paper
- nearly continuous colors -- no halftoning required

Modems

- carrier wave -- pure sine wave between 1000 Hz & 2000 Hz
- amplitude modulation -- voltage difference <0,1>
- frequency modulation -- carrier frequency difference <0,1>
- phase modulation -- carrier phase reversal 180 degrees
 when data switches values 0→1 | 1→0
 - dibit phase encoding -- 45°, 135°, 225°, 315°
 - represents 00, 01, 10, 11
- baud rate -- number of potential signal changes per second
- bit rate -- number of bits per second
- start bit + 8-bit byte stream + stop bit
- full duplex -- simultaneous transmissions in both directions
- half-duplex -- transmit in one direction at a time
- simplex -- transmit in one direction only

ISDN Integrated Services Digital Network

- two independent data channels
 64KB/second
- signaling channel 16KB/second
- transmission channel multiplexed into 144KB/second
- T interface + NT1 device + U interface

ASCII American Standard Code for Information Interchange

- 7 bit code
- data transmission

UNICODE

16 bit code

Digital Logic

kimki

MicroArchitecture Organization

bybvyvg

Instruction Set Architecture inuinoinio

Operating System Architecture

Assembly Language Process

Parallel Computer Architectures