Motivation

- Exponential performance increase at a low cost
- However, for some application areas low power consumption is more important than performance:
 - Mobile communications
 - Mobile computing
 - Wireless Internet
 - Medical implants
 - Deep space applications
 - Battery life time

Designing for Low Power: Approaches

- Trading area/performance for power
 - Power can be reduced by decreasing the supply voltage and allowing the performance to degrade.
 - Trading performance for power
 - But these techniques incur an area penalty.
 - Trading area for power
Designing for Low Power: Approaches

- Avoiding waste
 - Avoiding waste
 - Clocking module when they are idle
 - Glitching
 - Using dedicated rather than programmable hardware
 - Reducing control overhead by using regular algorithms and architectures
 - Designing systems to meet performance requirements

- Exploiting locality
 - Global operations inherently consume a lot of power.
 - Data must be transferred from one part of the chip to another at the expense of switching large bus capacitances.
 - A design partitioned to exploit locality of reference can minimize the amount of expensive global communications employed in favor of much less costly local interconnect networks.

Crusoe Family of Processors from Transmeta

- Introduction
- Software: Code Morphing
- Hardware: VLIW core
- Performance
- Applications
The Idea – David Ditzel

- Champion of simple chip architecture.
- 1995
 - Chief Technical Officer of Sun MicroSystems Inc.’s Sparc Business.
 - Working on emulation of x86 software on Sparc Processors.

Early 1995 left Sun and worked on his own idea.
- Was not happy with the complexity of the architectures of recent times.
- Some new ideas mixed with some old ideas to build a simple and fast architecture capable of running x86 code.
- Software hardware hybrid.

The Company - Transmeta

- Ditzel and Colin Hunter choose the name Transmeta and the company was formed in Summer of 1995.
- Use of contacts in the industry to recruit top brains for the ideas.
- Design started in the living rooms of the founders homes.
- Now employs many people.
Innovation

- Transmeta Crusoe chip
 - x86 Emulation
 - Very Long Instruction Word (VLIW)
 - Code Morphing
 - Simple Architecture
 - LongRun Technology
 - Virtual Devices
 - Low Power

Introducing a Software Layer

Software: Code Morphing

- Performs **dynamic binary translation**.
 - Compiles instructions from one instruction set architecture (ISA) to another ISA.
Decoding and Scheduling

Conventional x86 superscalar processors fetch binary instructions and decode them into separate micro-operations. Then they are reordered by the hardware and executed in parallel.

Code morphing translates an entire group of x86 instructions at once and stores the translation in a translation cache for future reference.
Decoding and Scheduling

- The translation step introduces many opportunities.
 - Due to high repeat rates the translation cache is frequently used to reduce overhead.
 - Can use much more sophisticated scheduling algorithms.
 - Much lower power consumption because translation is all in software.
 - Can optimize generated code, and by 'learning' which parts are executed often, can change levels of optimization dynamically.

Instruction Set Emulation

- Emulation is traditionally slow because of the way different ISAs handle condition codes and exceptions.
- Crusoe uses specific registers to emulate setting of condition codes by the processor (.c suffix is used after the instruction to show that condition codes need to be set).
- Exceptions are handled by using shadow registers, and a procedure called "commit and rollback"
Translation Step 2

Optimization
Elimination of
atoms + extra
condition
code options.

Optimized Native VLIW code
Native VLIW code

Translation Step 3

Optimized Native VLIW code

Scheduled Native VLIW code

Software’s Edge

Molecules explicitly encode the instruction-level parallelism, hence they can be executed by a simple VLIW engine.

The hardware doesn’t need to perform complex instruction reordering.

Simplicity means fast and low-power design.

Processor upgrades are simplified.

Software layer means that software developers don’t have to recompile programs.

New hardware architecture only needs a new code morphing software from Transmeta.
Software’s Edge

- Code morphing software can be upgraded independently into flash ROM.
- Software layer helps debugging process.
 - There are different ways to perform the same function so software can be changed in debug process.
- Software layer increases performance.
 - Timing of critical paths are improved.
 - Optimization is applied to remove unnecessary instructions.
 - Software reordering can be done much better than hardware by looking at a bigger window of instructions and applying more complicated algorithms.

Several ISA

- Allows you to mix instruction sets with ease because they are all emulated by the software.

Hardware

Modern x86 CPU

Transmeta’s Crusoe

[Diagram of Modern x86 CPU and Transmeta’s Crusoe]
Chip Simplifications

- No Superscalar decode, grouping or issue logic.
- No register renaming or segmentation hardware.
- No floating point stack hardware.
- No front end memory management.
- Less interlock and bypassing logic.
Hardware Specifications

- 128 bit High performance VLIW engine
- 2 Integer units (ALU's)
- Floating point unit
- Memory unit
- Branch unit

![Image of hardware specifications]

Code Morphing Hardware Support

- Handling exceptions by shadowing.
- Commit and rollback.
- Gated Store Buffer.
- Aliasing Hardware.
- Protection for self modifying code.
- LongRun Technology.
Performance

- Originally designed for 32 bit conversions i.e. Unix (TM3120).
- However 16 bit windows instructions translated poorly so (TM5400)
 - The chip was redesigned to give better support to Windows 95 16-bit applications.
 - Larger caches were also included for improved Windows performance.
- Two chips - Two different applications.

Low Power Consumption

- Fewer Transistors (simpler hardware)
 - Virtual devices
- TM3120 Chip Voltage of 1.5V
- LongRun Power Management (TM5400 Dynamically adjustable frequency & voltage)

Implications

- Low Power consumption means low heat
- Low heat means no need for noisy power hungry fans or heat sinks
- Smaller lightweight computers possible
- Economy and extended battery life for mobile computers
Processor Thermal Comparison

Intel Pentium III
Crusoe TM5400 Processor

Comparison of Watts per Hour

Applications:
- Portable and embedded systems.
- Runs a mobile Linux kernel.
- Capable of running Internet applications:
 - Web browsers.
 - E-mail applications.
 - Streaming video.
Application of the 5400

- Ultralite Laptops.
- Microsoft Windows compatible.
- Computer makers backing Transmeta include: IBM, Fujitsu, FIC, NEC, and Hitachi.

Mobile Internet Appliance

- Web pads, Notebooks, Smart Phones, PDAs.

Super Parallel Computing

- Code-morphing allows big jobs to be processed with a mixture of CPUs easily.
- Crusoe CPU’s can receive a block of code and dynamically re-compile it into their own ISA.
Future Plans

- Targeting the Desktop market.
- Faster Crusoe chips
 - speeds in excess of 1.4Ghz
 - cache sizes as high as 2MB