Unix Internals

2

Process & Kernel

program – sequence of instructions

process – program in execution

process control point

tracks execution sequence – program counter PC

single threaded process

single control point – single instruction sequence

multi-threaded process

multiple control points – multiple instruction sequences

process address space – memory available to the process

virtual address – kernel stores address space in

· physical memory,

· disk files,

· swap space

process control block

register contents

ready queue

wait queues

operating system

kernel – memory resident program – runs directly on hardware

 -- disk file name
/unix, /vmunix, …

utilities

functionality

process requests O/S services via system call -- API function interface

process action (hardware exceptions

peripheral devices (hardware interrupts

system process perform system-wide tasks

Execution Modes

kernel mode
-- kernel functions

user mode – user programs

Virtual Memory

address translation maps

implemention

· set of page tables attached to process

· memory management unit (MMU) hardware

MMU registers identify page tables of currently running process

Process Kernel Space

· per-process entities in the process space

· owned and managed by the kernel

U area – process information of interest to kernel

· process open file table

· process identification information

· process register values when process is not running

Kernel Stack – track function call sequence

· kernel is re-entrant, i.e., it allows concurrent execution of multiple processes

· hence each process requires it’s own kernel stack space

Execution Context

kernel functions

· process context – acting for the process – system call

· system / interrupt context – performing system-wide tasks

user mode

((

 kernel mode

process space

((

system space

process context

((

system context

user code (
runs in user mode & process context

can only access process space

system calls

& exceptions

interrupts (
runs in kernel mode & system context;

can only access system space

process –

· consists of an address space & control point(s) (at least one)

· is an entity that provides an execution environment for a program

· is a fundamental scheduling entity

· contends for and owns various system resources

· has a lifetime bracketed by [fork() … exit()] system calls

· may execute multiple programs -- sequentially

/etc/init –

· is the ancestor of all user processes

· adopts all active child processes orphaned by their parent

process state –

· fork() (idle state until completed; (ready state

· context switch : swtch() (loads system registers with process information

 (transfers control to process

· in user mode, executes system call (enters kernel mode;

kernel function executes

· in user mode, receives an interrupt (enters kernel mode;

kernel function executes

· scheduled to run (initially runs in kernel mode;

if process was new or was executing in user mode (resume user mode

if process was blocked while executing a system call (

resume execution of system call in kernel mode

· terminates due to

exit system call

signal notification

kernel releases all resources except

exit status and

resource usage information

process enters zombie state until

parent executes wait() system call (

destroys process

returns exit status to parent

Process Context

user address space

· program text (executable code)

· data

· user stack

· shared memory regions

· …

control information

· u area

· proc structure

· process kernel stack

· address translation maps

credentials

· associated user & group ID’s

· …

environmental variables

· are a set of strings of the form <variable name> = <value>
· are inherited from the parent

· are stored at the bottom of the user stack

· standard user library facilitates the manipulation of environmental variables

· may be replaced or retained during an exec() system call

hardware context

· contents of general-purpose registers

· contents of special system registers

1. program counter

2. stack pointer

3. processor status word psw

4. memory management registers

5. floating point unit registers (fpu)

machine registers contain hardware context of currently running process

context switch (machine register content saved in process control block

process control block is a special section of the u area

User Credentials

UID
user ID

GID
user group ID

superuser

UID == 0

GID == 1

process

real UID

effective UID

real GID

effective GID

login process (shell process

real UID

effective UID

real GID

effective GID

variables set to values located in password file

child inherits credentials from parent

during file creation

kernel sets owner attributes of the file

to the effective UID & GID of the creating process

during file access

kernel uses effective UID & GID of the process

to determine if the process has access permission

real UID & GID

identify the real owner of the process

determine signaling privileges of the process

process P1 -- without superuser privileges

sender -- P1 effective or real UID

must match

real UID of receiver – p2

Changing User Credentials

· process uses exec() system call to run

· user executes setuid() or setgid() system calls

Control Information

u area

· part of the process space – mapped & visible only when process is running

· contains data that is needed only when the process is running

· on many implementations

u area is mapped to same fixed virtual address in each process

kernel references u area via the u variable

· contents
(u area)

(process control block

(pointer to proc structure for process

(real UID, effective UID

(real GID, effective GID

(current system call information

arguments, return values, error status

(signal handlers, …

(program header information

text, data & stack sizes

memory management information

(open file descriptor table

(pointers to vnodes of the

current directory

and

controlling terminal

(CPU usage statistics, profiling data, disk quotas, resource limits

(in many implementations

per-process kernel stack

[image: image1]

proc structure

· resides in kernel space (visible to kernel at all times

· contains information that may be needed even when the process is not running

· implementation

(fixed size array of pointers to dynamically allocated proc structures

(fixed size array of proc structures ((process table

(hard limit on the number of processes that can exist at any one time

· contents
(proc structure)

(identification
PID, GID, SID (session ID)

(location of the kernel address map for the process u area

(current process state

(bidirectional pointers to link process into scheduler queue or wait queue

(sleep channel for blocked processes

(signal handling information – signal masks

(memory management information

(pointers to link process into lists of active, free, & zombie processes

(miscellaneous flags

(pointers to keep structure in a hash queue based on its PID

(hierarchy information – relationship of this process to all other processes

Kernel Mode Events

· interrupt

asynchronous event

caused by peripheral device or hardware clock

not caused by current process

must be serviced in system context

may not access process address space nor u area

must not block

· exceptions

synchronous to process – caused by events related to process

exception handler

runs in process context

may access process address space nor u area

may block

· software interrupts (traps)

occur when process executes system call

handled synchronously in process context

System Call Interface

Standard C Library –

system call (

wrapper routine (

pushes system call number onto user stack

invokes system call trap instruction (
change execution mode to kernel mode

transfer control to system call handler syscall()

syscall() (copies system call arguments from user stack to u area

 saves hardware context of process on kernel stack

 uses system call number to index into

system call dispatch vector to determine which

kernel function to call to perform the system call

kernel function returns (syscall() (

sets return values or error status in appropriate registers

restores hardware context

returns to user mode

transfers control back to library routine

Interrupt Handling

interrupted process has no relation to the interrupt

interrupt handler or interrupt service routine

runs in kernel mode & system context

time to service interrupt charged to interrupted (current) process

clock interrupt handler charges clock tick to interrupted (current) process

must have access to proc structure of interrupted (current) process

interrupt priority levels -- ipl

processor status register – current ipl

saved interrupt register – pending interrupts with lower ipl values

kernel may raise current ipl value to

block interrupts during critical section code processing

Synchronization

· kernel is nonpreemptive

process executing in kernel mode executes until it relinquishes the CPU

about to block while waiting for resource

completed kernel activity and about to return to user mode

· blocking operations

object – lock, wanted flag

to use object, process checks lock

if locked, process sets wanted flag & blocks on object

if not locked, lock object; use object

upon completion,

process (wakeup() (

finds all blocked processes

changes state to runnable

places process on scheduler queue

substantial delay between

the time that the process is awakened

and

the time that it actually runs

when the awakened process actually runs,

it must check the availability of the resource

· interrupts

accessing critical data structures – critical regions

block interrupts

manipulate critical data region

enable interrupts

· multiprocessor synchronization

< to be supplied later >

Process Scheduling

scheduler – apportions CPU between processes

scheduling algorithm

preemptive round robin using priorities

kernel priorities >> user priorities

kernel priorities are fixed – depend upon

process

reason for sleeping

user process priority (nice value + usage factor

usage factor

process not running (usage priority increases

process running (usage priority decreases

Signals

asynchronous event notification

exception handling

kill() : process (process

keystroke or other terminal event : terminal driver (terminal processes

kernel : kernel (process

signal default responses

· process termination

· process suspension

· ignored

sigaction() responses

· user-specified signal handler

· ignore signal

· block

· revert to default

signal sent (

kernel sets bit in pending signals mask in proc structure
· when the receiving process runs, it handles all pending signals before returning to normal user-level activity

· if the receiving process is blocked on a system call, waiting for an event that may not occur for some indefinite time, the kernel will abort the system call and wake the process

Process Creation

after fork() returns

parent & child

· are executing same program

· have identical data & stack regions

· resume execution at the instruction following the fork() call

fork system call actions

1. reserve swap space for child data & stack areas

2. allocate new PID & proc structure for child

3. initialize child’s proc structure
· copied from parent

UID, GID process group, signal masks, etc

· set to zero

resident time, CPU usage, sleep channel, etc

· initialize to child-specific values

PID, PPID pointer to parent proc structure

4. allocate child’s address translation maps

5. allocate child’s u area; copy from parent’s u area
6. update new u area to refer to new address maps & swap space

7. add child to set of processes sharing the text region of the program that the parent is executing

8. duplicate the parent’s data & stack regions, one page at a time;

update the child’s address maps to refer to the new pages

9. acquire references to shared resources inherited by the child,

e.g., open files, current working directory

10. initialize the child’s hardware context by copying the parent’s register content (snapshot) stored in the parent’s hardware context

11. change the child’s state to runnable;

place the child process on scheduler queue

12. provide child with a fork() return value of zero

13. assign the child’s PID as the return value provided to the parent from the fork() system call

fork() optimization

the child must have a logically distinct copy of the parent’s address space

· physically distinct copy of parent’s address space

· copy-on-write

· parent’s data & stack pages

(made read-only & marked as copy-on-write
· child receives own copy of address translation maps,

but shares the parent’s memory pages

· if either parent or child attempts to modify a page then

a page fault exception occurs

&

the kernel page fault handler is invoked;

page fault handler recognizes page marked as copy-on-write; creates a new writeable copy of that single page for the child, copies the parent’s page to the child’s page, changes the child’s address translation map to reflect the new page, changes the parent’s page to writeable, and returns to allow the modification to occur

· if child calls exec() or exit(), parent’s data & stack pages

revert to read-write status & the copy-on-write flag is cleared

exec() system call

· frees the old address space

· allocates a new address space

· loads the new address space with the new program contents

process address space components

· text

text section of program – executable code

· initialized data

initialized data section of program – explicitly initialized data objects

· uninitialized data -- block static storage (bss)

· data variable declared but not initialized in program

· guaranteed to be zero-filled when first accessed

· program header records total size of region;

o/s generates zero-filled pages for these variables

· shared memory

· shared libraries

· dynamically linked libraries – pointers to library code memory regions

· private data area for use with dynamically linked libraries

· heap

· process dynamically allocates memory from heap

· brk & sbrk system calls

· malloc() function – Standard C Library

· kernel extends heap as required

· user stack

· kernel allocates a stack for each process

· kernel catches stack overflow exceptions

& extends user stack up to a preset maximum

executable file formats

a.out format

· header 32-byte

· text section size

· initialized data region size

· uninitialized data region size

· entry point – address of program’s first executable instruction

· magic number

· identifies the file as a valid executable file

· additional format information

· file is demand paged

· data section begins on a page boundary

· etc

· text section

· initialized data region

· uninitialized data region

· symbol table

invoking new executable program – exec call
1. parse pathname; access executable file

2. verify caller has execute permission for file

3. read header; verify that file is a valid executable

4. SUID or SGID bits set in executable file (

set caller’s effective UID or GID to file owner’s UID or GID

5. copy exec() arguments & environment variables into kernel space

6. allocate swap space for data & stack regions

7. free old address space & associated swap space

8. allocate address maps for the new text, data & stack areas

9. initialize new address space;

if text region is already active, share it with process

else initialize text area from the executable file

10. copy exec() arguments & environment variables from kernel space

onto the new user stack

11. reset all signal handlers to default actions; signals that were ignored or blocked before calling exec() remain ignored or blocked

12. initialize the hardware context; set program counter to program’s entry point

terminating executable process

exit system call (kernel exit() function

exit() function

1. turn off all signals

2. close all open files

3. release text file & other resources, e.g., current working directory

4. update the accounting log

5. save resource usage statistics & exit status in the proc structure
6. change process state to SZOMB;

place the proc structure on the zombie process list

7. init() inherits all living children of the terminating process

8. release

· address space

· u area
· address translation maps

· swap space

9. send SIGCHLD signal to parent of terminating process;

· signal ignored by default

· has effect only if parent has issued wait() system call

10. wake parent if required

11. call swtch() to schedule new process

awaiting process termination

wait() system call allows a process to wait for a child to terminate

wait()

if caller has deceased or suspended children

wait() returns immediately

else

wait() blocks caller until a child terminates

once a child terminates, wait() returns immediately

· returns PID of terminated child process

· writes child’s exit status to stat_loc

· frees child’s proc structure

· returns error if caller has no children

· returns error if wait() is interrupted by a signal

wait(stat_loc);

SVR4, BSD, POSIX

wait3(statusp, options, rusagep);
BSD

returns resource usage information regarding child process

waitpid(pid, stat_loc, options);

POSIX

wait for child with selected pid

wait(idtype, id, infop, options);

SVR4

wait for pid or gid

trap specific events

return detailed information regarding child process

zombie processes

process exits (process

· status == zombie

· resource == proc structure < exit status; resource usage >

· parent terminates before child (init() process inherits child;

 when child terminates, init() calls wait();

 wait() releases child’s proc structure

· child terminates before parent

&

parent does not call wait()

new process

CPU

terminated process

PCB

user access

reserved by the kernel for kernel access only

PCB

process address space

PCB

PCB

process virtual address space

virtual address

virtual address

virtual address

physical memory address space

physical memory address

physical memory address

physical memory address

address translation maps

per process objects

maintained by kernel

u area

kernel stack

P2

may access

address space

u area

kernel stack

of the current process

may not access

address space

u area

kernel stack

of the current process

runs in kernel mode & process context ;

may access process space and system space

P1

signal

program that was installed to run in sgid mode

(

kernel changes effective GID of process to the GID of the file owner

program that was installed to run in suid mode

(

kernel changes effective UID of process to the UID of the file owner

superuser (can change

	real UID, effective UID,

real GID, effective GID

			

normal users (can only change their

effective UID back to their real UID or saved UID

effective GID back to their real GID or saved GID

saved UID (effective UID prior to exec() system call

saved GID (effective GID prior to exec() system call

 users may belong to a set of supplemental groups

files created by user belong to the primary group

user can access file belonging to either the

primary or the supplementary groups

system call

	executes in kernel mode & process context

	has access to

		process address space

		u area

	uses kernel stack of calling process

|

n = fork();

if (n == 0) exec();

else …

Parent

|

n = fork();

if (n == 0) exec();

else …

Child

child’s address space is a “replica” of the parent’s address space; child is almost exact clone of parent; fork() returns 0 to child, child’s PID to parent

before invoking the exec() system call, the child process may

redirect input / output

close open files

change UID

change process group

reset signal handlers

BSD UNIX	vfork() –

parent address space loaned to the child;

parent blocks until address space is returned

child executes using parent’s address space until it calls exec() or exit()

then

kernel returns address space to parent and awakens parent

address space passed by copying the address map registers

address maps are not copied

allows one process to modify the address space of another process

shared memory

supported by System V

not supported by 4.3BSD

exit() completes

process in zombie state

parent may retrieve exit status & resource usage statistics

parent is responsible for freeing child’s proc structure

options

WNOHANG

wait3() returns immediately if there are no deceased children

waitid() returns immediately if there are no deceased children

WUNTRACED

wait3() returns immediately if a child is suspended or resumes

waitid() returns immediately if a child is suspended or resumes

child’s proc structure is never released; child remains in zombie state until system is rebooted;

zombies remain visible in output from the ps command;

zombies retain a proc structure thereby reducing the maximum number of processes that can be active

SVR4

sigaction() system call

specify SA_NOCLDWAIT flag

instructs kernel not to create zombies when caller’s children terminate

file system objects

state of “interrupted” process (kernel stack

dispatch table (event processing

C. Robert Putnam
Page 17
2/16/2004
Process & Kernel 2

6:22 PM

