
12-01-10	

1	

Big-O notation	

Lecture 10	

Running time of selection sort	

•  We showed that running selection sort on an

array of n elements takes in the worst case
T(n) = 1 + 15 n + 5 n2 primitive operations	

•  When n is large, T(n) ≈ 5 n2	

•  When n is large, 	

	

T(2n) / T(n) ≈ 5 (2n)2 / 5 n2	

	

	

 	

 ≈ 4	

	

Doubling n quadruples T(n)	

	

N.B. That is true for any 	

 coefficient of n2 (not just 5)	

n	

 T(n)	

10	

 661	

20	

 2301	

30	

 4951	

40	

 8601	

...	

 ...	

1000	

 5015001	

2000	

 20030001	

Big - O notation	

•  Goals: 	

– Simplify the discussion of algorithm running
times	

– Describe how the running time of an algorithm
increases as a function of n (the size of the
problem), when n is LARGE	

– Get rid of terms that become insignificant when n
is large	

•  We will say things like:	

The worst-case running time of selectionSort on an

array of n elements is O(n2)	

The worst-case running time of mergeSort on an

array of n elements is O(n log(n)) 	

Big-O definition	

•  Let f(n) and g(n) be two non-negative

functions defined on the natural numbers N	

•  We say that f(n) is O(g(n)) if and only if:	

– There exists an integer n0 and a real number c
such that: for all n ≥ n0, f (n) ≤ c • g(n)	

More mathematically, we would write	

– ∃ n0 ∈ N, ∃ c ∈ R : ∀ n ≥ n0, f (n) ≤ c • g(n)	

•  N.B. The constant c must not depend on n	

Intuition and visualization	

•  “f(n) is O(g(n))” iff there exists a point n0

beyond which f(n) is less than some fixed
constant times g(n) 	

n0	

f(n)	

g(n)	

For all n ≥ n0	

f(n) ≤ c • g(n) (for c = 1)	

 n0 = 2	

f(n) =5 + 3 n2	

g(n) = 1 + n2	

2 g(n)	

3 g(n)	

4 g(n)	

f(n) = 5 + 3 n2	

g(n) = 1 + n2	

f(n) is O(g(n)), because there exists n0 = 2 and c = 4
such that for all n ≥ n0, f(n) ≤ c • g (n) 	

12-01-10	

2	

Proving big-O relations	

•  To prove that f(n) is O(g(n)), we must find n0
and c such that f(n) ≤ c • g (n)	

•  Example: Prove that 5 + 3 n2 is O(1 + n2)	

We need to pick c greater 3. Let’s pick c = 5.	

If we choose n0 = 1, we get that if n ≥ n0, then	

 5 + 3 n2 ≤ 5 + 5 n2 (since n ≥ n0)	

 = 5 (1 + n2)	

 = c (1 + n2)	

Examples	

•  Prove that 2n + 3 is O(n)	

Examples	

•  Prove that f(n) = 10100 is O(1)	

Examples	

•  Prove that n (sin(n) + 1) is O(n)	

Proving that f(n) is not O(g(n))	

•  To prove that f(n) is not O(g(n)), one must
show that for any n0 and c, there exists an
n ≥ n0 such that f(n) > c g(n)	

•  Procedure: Assume n0 and c are given, and
find a value of n such that f(n) > c g(n). The
value of n will usually depend on n0 and c	

Examples	

•  Prove that n2 is not O(n)	

12-01-10	

3	

Examples	

•  Prove that n (sin(n) + 1) is O(n)	

Examples	

•  Prove that n3 is not O(2n)	

