Big-O notation

Lecture 10

12-01-10

Running time of selection sort

* We showed that running selection sort on an
array of n elements takes in the worst case
T(n) =1+ 15 n + 5 n? primitive operations

e When n is large, T(n) = 5 n? n T(n)

* When n is large, 10 661
T(2n) / T(n) =5 (2n)>/5n%> |20 2301

=4 30 4951
Doubling n quadruples T(n) (40 8601
N.B. That is true for any .
coefficient of n? (not just 5) {1000 5015001
2000 20030001

Big - O notation
* Goals:
— Simplify the discussion of algorithm running
times
— Describe how the running time of an algorithm
increases as a function of n (the size of the
problem), when n is LARGE
— Get rid of terms that become insignificant when n
is large
* We will say things like:
The worst-case running time of selectionSort on an
array of n elements is O(n?)

The worst-case running time of mergeSort on an
array of n elements is O(n log(n))

Big-O definition

* Let f(n) and g(n) be two non-negative
functions defined on the natural numbers N

* We say that f(n) is O(g(n)) if and only if:
— There exists an integer n,, and a real number ¢

such that: for all n = ng,f (n) <c * g(n)

More mathematically, we would write
—3dn,EN,3cER:Vn=ny,f(n)=<cegh)

* N.B. The constant ¢ must not depend on n

Intuition and visualization

* “f(n) is O(g(n))” iff there exists a point n,,
beyond which f(n) is less than some fixed
constant times g(n) g(n)

f(n)

For all n = n,

f(n) <cegm) (forc=1)

Ny

4 g(n)
fn)=5+3n> f(n) =5 + 3 n?
gn)=1+n? 3gm)

‘/ 2gm

/ gn)=1+ n?
—/

n,=2

f(n) is O(g(n)), because there exists ny=2 and c =4
such that for alln>n, f(n)<ceg(n)

Proving big-O relations

* To prove that f(n) is O(g(n)), we must find n,,
and c such that f(n) <c ¢ g (n)

¢ Example: Prove that 5 + 3 n2is O(1 + n?)
We need to pick c greater 3. Let’ s pick c = 5.
If we choose n, = 1, we get that if n = n,, then

12-01-10

Examples
¢ Prove that 2n + 3 is O(n)

5+3n2<5+5n? (since n = n,)
=5(1+m)
=c(l+n?
Examples

* Prove that f(n) = 1019 is O(1)

Examples

¢ Prove that n (sin(n) + 1) is O(n)

Proving that f(n) is not O(g(n))

* To prove that f(n) is not O(g(n)), one must
show that for any n, and c, there exists an
n = n, such that f(n) > ¢ g(n)

* Procedure: Assume n, and c are given, and
find a value of n such that f(n) > ¢ g(n). The
value of n will usually depend on n;, and ¢

Examples

* Prove that n2 is not O(n)

Examples
¢ Prove that n (sin(n) + 1) is O(n)

12-01-10

Examples

* Prove that n3 is not O(2")

