Big-O notation

Lecture 10

Running time of selection sort

- We showed that running selection sort on an array of n elements takes in the worst case $\mathrm{T}(\mathrm{n})=1+15 \mathrm{n}+5 \mathrm{n}^{2}$ primitive operations
- When n is large, $T(n) \approx 5 n^{2}$
- When n is large,
$\mathrm{T}(2 \mathrm{n}) / \mathrm{T}(\mathrm{n}) \approx 5(2 \mathrm{n})^{2} / 5 \mathrm{n}^{2}$ ≈ 4
Doubling n quadruples $\mathrm{T}(\mathrm{n})$ N.B. That is true for any coefficient of n^{2} (not just 5)

n	$\mathrm{T}(\mathrm{n})$
10	661
20	2301
30	4951
40	8601
\ldots	\ldots
1000	5015001
2000	20030001

Big-O definition

- Let $\mathrm{f}(\mathrm{n})$ and $\mathrm{g}(\mathrm{n})$ be two non-negative functions defined on the natural numbers N
- We say that $f(n)$ is $O(g(n))$ if and only if:
- There exists an integer n_{0} and a real number c such that: for all $\mathrm{n} \geq \mathrm{n}_{0}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$
More mathematically, we would write
$-\exists \mathrm{n}_{0} \in \mathrm{~N}, \exists \mathrm{c} \in \mathrm{R}: \forall \mathrm{n} \geq \mathrm{n}_{0}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$
- N.B. The constant c must not depend on n

Intuition and visualization

- " $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{g}(\mathrm{n})\right.$)" iff there exists a point n_{0} beyond which $f(n)$ is less than some fixed

$\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$, because there exists $\mathrm{n}_{0}=2$ and $\mathrm{c}=4$ such that for all $\mathrm{n} \geq \mathrm{n}_{0}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$

Proving big-O relations

- To prove that $f(n)$ is $O(g(n))$, we must find n_{0} and c such that $\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$
- Example: Prove that $5+3 n^{2}$ is $\mathrm{O}\left(1+n^{2}\right)$

We need to pick c greater 3. Let's pick $\mathrm{c}=5$.
If we choose $\mathrm{n}_{0}=1$, we get that if $\mathrm{n} \geq \mathrm{n}_{0}$, then $5+3 n^{2} \leq 5+5 n^{2} \quad\left(\right.$ since $\left.n \geq n_{0}\right)$
$=5\left(1+\mathrm{n}^{2}\right)$
$=\mathrm{c}\left(1+\mathrm{n}^{2}\right)$

Examples

- Prove that $\mathrm{f}(\mathrm{n})=10^{100}$ is $\mathrm{O}(1)$

Examples

- Prove that $\mathrm{n}(\sin (\mathrm{n})+1)$ is $\mathrm{O}(\mathrm{n})$
- Prove that $2 n+3$ is $O(n)$
\qquad

Proving that $\mathrm{f}(\mathrm{n})$ is not $\mathrm{O}(\mathrm{g}(\mathrm{n}))$

Examples

- Prove that n^{2} is not $\mathrm{O}(\mathrm{n})$
- To prove that $\mathrm{f}(\mathrm{n})$ is $\operatorname{not} \mathrm{O}(\mathrm{g}(\mathrm{n}))$, one must show that for any n_{0} and c , there exists an $\mathrm{n} \geq \mathrm{n}_{0}$ such that $\mathrm{f}(\mathrm{n})>\mathrm{c} \mathrm{g}(\mathrm{n})$
- Procedure: Assume n_{0} and c are given, and find a value of n such that $f(n)>c g(n)$. The value of n will usually depend on n_{0} and c

Examples
• Prove that $\mathrm{n}(\sin (\mathrm{n})+1)$ is $\mathrm{O}(\mathrm{n})$

Examples
- Prove that n^{3} is not $\mathrm{O}\left(2^{\mathrm{n}}\right)$

