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Big-O notation	



Lecture 10	



Running time of selection sort	


•  We showed that running selection sort on an 

array of n elements takes in the worst case  
T(n) = 1 + 15 n + 5 n2 primitive operations	



•  When n is large, T(n) ≈ 5 n2	


•  When n is large, 	


	

T(2n) / T(n) ≈ 5 (2n)2 / 5 n2	



	

	

 	

      ≈ 4	


	

Doubling n quadruples T(n)	


	

N.B. That is true for any 	



   coefficient of n2 (not just 5)	



n	

 T(n)	


10	

 661	


20	

 2301	


30	

 4951	


40	

 8601	


...	

 ...	


1000	

 5015001	


2000	

 20030001	



Big - O notation	


•  Goals: 	



– Simplify the discussion of algorithm running 
times	



– Describe how the running time of an algorithm 
increases as a function of n (the size of the 
problem), when n is LARGE	



– Get rid of terms that become insignificant when n 
is large	



•  We will say things like:	


The worst-case running time of selectionSort on an 

array of n elements is O( n2 )	


The worst-case running time of mergeSort on an 

array of n elements is O( n log(n) ) 	



Big-O definition	


•  Let f(n) and g(n) be two non-negative 

functions defined on the natural numbers N	


•  We say that f(n) is O( g(n) ) if and only if:	



– There exists an integer n0 and a real number c 
such that: for all n ≥ n0, f (n) ≤ c • g(n)	



More mathematically, we would write	


– ∃ n0 ∈ N, ∃ c ∈ R : ∀ n ≥ n0, f (n) ≤ c • g(n)	



•  N.B. The constant c must not depend on n	



Intuition and visualization	


•  “f(n) is O(g(n))” iff there exists a point n0 

beyond which f(n) is less than some fixed 
constant times g(n) 	



n0	



f(n)	



g(n)	



For all n ≥ n0	



f(n) ≤ c • g(n)  (for c = 1)	

 n0 = 2	



f(n) =5 + 3 n2	



g(n) = 1 +  n2	



2 g(n)	



3 g(n)	



4 g(n)	


f(n) = 5 + 3 n2	



g(n) = 1 + n2	



f(n) is O( g(n)), because there exists n0 = 2 and c = 4 
such that for all n ≥ n0,  f(n) ≤ c • g (n) 	





12-01-10	



2	



Proving big-O relations	



•  To prove that f(n) is O( g(n) ), we must find n0 
and c such that f(n) ≤ c • g (n)	



•  Example: Prove that 5 + 3 n2 is O( 1 + n2)	


We need to pick c greater 3. Let’s pick c = 5.	


If we choose n0 = 1, we get that if n ≥ n0, then	


 5 + 3 n2 ≤ 5 + 5 n2        (since n ≥ n0)	


              = 5 (1 + n2)	


              = c (1 + n2)	



Examples	


•  Prove that 2n + 3 is O(n)	



Examples	


•  Prove that f(n) = 10100 is O(1)	



Examples	


•  Prove that n (sin(n) + 1) is O(n)	



Proving that f(n) is not O(g(n))	



•  To prove that f(n) is not O(g(n)), one must 
show that for any n0 and c, there exists an   
n ≥ n0 such that f(n) > c g(n)	



•  Procedure: Assume n0 and c are given, and 
find a value of n such that f(n) > c g(n). The 
value of n will usually depend on n0 and c	



Examples	


•  Prove that n2 is not O(n)	
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Examples	


•  Prove that n (sin(n) + 1) is O(n)	



Examples	


•  Prove that n3 is not O(2n)	




