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Big-O notation	


Lecture 10	


Running time of selection sort	

•  We showed that running selection sort on an 

array of n elements takes in the worst case  
T(n) = 1 + 15 n + 5 n2 primitive operations	


•  When n is large, T(n) ≈ 5 n2	

•  When n is large, 	

	
T(2n) / T(n) ≈ 5 (2n)2 / 5 n2	


	
	
 	
      ≈ 4	

	
Doubling n quadruples T(n)	

	
N.B. That is true for any 	


   coefficient of n2 (not just 5)	


n	
 T(n)	

10	
 661	

20	
 2301	

30	
 4951	

40	
 8601	

...	
 ...	

1000	
 5015001	

2000	
 20030001	


Big - O notation	

•  Goals: 	


– Simplify the discussion of algorithm running 
times	


– Describe how the running time of an algorithm 
increases as a function of n (the size of the 
problem), when n is LARGE	


– Get rid of terms that become insignificant when n 
is large	


•  We will say things like:	

The worst-case running time of selectionSort on an 

array of n elements is O( n2 )	

The worst-case running time of mergeSort on an 

array of n elements is O( n log(n) ) 	


Big-O definition	

•  Let f(n) and g(n) be two non-negative 

functions defined on the natural numbers N	

•  We say that f(n) is O( g(n) ) if and only if:	


– There exists an integer n0 and a real number c 
such that: for all n ≥ n0, f (n) ≤ c • g(n)	


More mathematically, we would write	

– ∃ n0 ∈ N, ∃ c ∈ R : ∀ n ≥ n0, f (n) ≤ c • g(n)	


•  N.B. The constant c must not depend on n	


Intuition and visualization	

•  “f(n) is O(g(n))” iff there exists a point n0 

beyond which f(n) is less than some fixed 
constant times g(n) 	


n0	


f(n)	


g(n)	


For all n ≥ n0	


f(n) ≤ c • g(n)  (for c = 1)	
 n0 = 2	


f(n) =5 + 3 n2	


g(n) = 1 +  n2	


2 g(n)	


3 g(n)	


4 g(n)	

f(n) = 5 + 3 n2	


g(n) = 1 + n2	


f(n) is O( g(n)), because there exists n0 = 2 and c = 4 
such that for all n ≥ n0,  f(n) ≤ c • g (n) 	
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Proving big-O relations	


•  To prove that f(n) is O( g(n) ), we must find n0 
and c such that f(n) ≤ c • g (n)	


•  Example: Prove that 5 + 3 n2 is O( 1 + n2)	

We need to pick c greater 3. Let’s pick c = 5.	

If we choose n0 = 1, we get that if n ≥ n0, then	

 5 + 3 n2 ≤ 5 + 5 n2        (since n ≥ n0)	

              = 5 (1 + n2)	

              = c (1 + n2)	


Examples	

•  Prove that 2n + 3 is O(n)	


Examples	

•  Prove that f(n) = 10100 is O(1)	


Examples	

•  Prove that n (sin(n) + 1) is O(n)	


Proving that f(n) is not O(g(n))	


•  To prove that f(n) is not O(g(n)), one must 
show that for any n0 and c, there exists an   
n ≥ n0 such that f(n) > c g(n)	


•  Procedure: Assume n0 and c are given, and 
find a value of n such that f(n) > c g(n). The 
value of n will usually depend on n0 and c	


Examples	

•  Prove that n2 is not O(n)	
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Examples	

•  Prove that n (sin(n) + 1) is O(n)	


Examples	

•  Prove that n3 is not O(2n)	



