Big-O notation

Lecture 10

Running time of selection sort

- We showed that running selection sort on an array of n elements takes in the worst case $T(n) = 1 + 15 n + 5 n^2$ primitive operations
- When n is large, $T(n) \approx 5 n^2$

• When n is large,	10	661
$T(2n) / T(n) \approx 5 (2n)^2 / 5 n^2$	20	2301
≈ 4	30	4951
Doubling n quadruples T(n)	40	8601
N.B. That is true for any		
coefficient of n^2 (not just 5)	1000	5015001
-	2000	20030001

n

T(n)

Big - O notation

- Simplify the discussion of algorithm running times
- Describe how the running time of an algorithm increases as a function of n (the size of the problem), when n is LARGE
- Get rid of terms that become insignificant when n is large

• We will say things like:

• Goals:

- The worst-case running time of selectionSort on an array of n elements is $O(\ n^2)$
- The worst-case running time of mergeSort on an array of n elements is O(n log(n))

Big-O definition

- Let f(n) and g(n) be two non-negative functions defined on the natural numbers N
- We say that f(n) is O(g(n)) if and only if:
 - There exists an integer n_0 and a real number c such that: for all $n \ge n_0$, f (n) $\le c \cdot g(n)$ More mathematically, we would write
 - $\exists n_0 \in N, \exists c \in R : \forall n \ge n_0, f(n) \le c \bullet g(n)$
- N.B. The constant c must not depend on n

- To prove that f(n) is O(g(n)), we must find n_0 and c such that f(n) \leq c g (n)
- Example: Prove that 5 + 3 n² is O(1 + n²) We need to pick c greater 3. Let's pick c = 5.

We need to pick c greater 5. Let s pick c = 5. If we choose $n_0 = 1$, we get that if $n \ge n_0$, then

 $5 + 3 n^2 \le 5 + 5 n^2$ (since $n \ge n_0$)

 $= 5 (1 + n^2)$

 $= c (1 + n^2)$

• Prove that 2n + 3 is O(n)

• Prove that $f(n) = 10^{100}$ is O(1)

Examples

• Prove that n (sin(n) + 1) is O(n)

Proving that f(n) is *not* O(g(n))

- To prove that f(n) is *not* O(g(n)), one must show that for any n_0 and c, there exists an $n \ge n_0$ such that f(n) > c g(n)
- Procedure: Assume n_0 and c are given, and find a value of n such that f(n) > c g(n). The value of n will usually depend on n_0 and c

Examples

• Prove that n² is *not* O(n)

• Prove that n (sin(n) + 1) is O(n)

Examples

• Prove that n³ is *not* O(2ⁿ)