
Lecture

Chapter 7

Stacks

Stack
 LIFO

 Top of the Stack

 Bottom of the Stack

Stack Operations
 Create an empty stack

 Determine whether a stack is empty

 Push a new item onto the top of the stack

 Retrieve the most recently added item (identify the item, do not remove)

 Pop from the stack the item that was most recently added

o Retrieve the most recently added item (identify the item, do not remove)

o Remove the item from the stack

 Remove all items from the stack

UML

 Preconditions
 Postconditions
 Axioms

1. (aStack.push(newItem)).pop() == aStack

Queue
 FIFO

 Front of the Stack

 Back of the Stack

Stack

Top

Items

+createStack()

+isEmpty(): Boolean {query}

+push(in: newItem:StackItemType) throws StackException

+pop():StackItemType throws StackException

 //Retrieves & Removes item on top of the stack

+popAll()

+peek():StackItemType {query} throws StackException

 //Retrieves, but does not remove item on top of the stack

Balanced Braces
 public static int rabbit(int n){if (n <= 2){{return 1;}else{

 return rabbit(n-1) + rabbit(n-2)} } } }

 (int n){if (n <= 2){{return 1;}else{return rabbit(n-1) + rabbit(n-2)} } } }

 (int n){if (n <= 2){{return 1;}else{return rabbit(n-1) + rabbit(n-2)} } } }

 [[[] []]]]

 For each “{“ encountered

Push “{“ on the stack

For each “}” encountered
Pop a “{“ off the stack

Open { 4

Closed } 5

match

count

Unbalanced since

have encountered

another “}” with no

“{“ to pop from the

stack

{

{

{

{

{

{

{

{

aStack.createStack()
balancedSoFar = TRUE
i = 0

while(balancedSoFar & i < aString.length())
{
 ch = char in ith position in aString
 ++i
 if (ch == “{“)
 {

aStack.push(“{“);
 }

 else if (ch == “}”)
 {
 if (! aStack.isEmpty())
 {
 openBrace = aStack.pop()
 }
 else
 {
 balancedSoFar = FALSE

}
 }

 }

if (balancedSoFar & aStack.isEmpty())
{
 aString balanced
}
else
{
 aString unbalanced
}

 else if (ch == “}”)
 {
 try
 {
 openBrace = aStack.pop()
 }
 catch (StackException e)
 {
 balancedSoFar = FALSE

}
 }

String Recognition in Languages

 L = { w$w’ : w != $, w may be empty }

 ABC$CBA L, AB$AB & ABC$CB ARE not in L

aStack.createStack()

i = 0
ch = char at position i in aString
while (ch != “$”)
{
 aStack.push(ch)
 ++ i
 ch = char at position i in aString
}

++i // skip “$” character
inLanguage = TRUE

while(inLanguage & i < aString.length)
{
 ch = char at position i in aString
 try
 {
 stackTop = aStack.pop()
 if (stackTop == ch)
 {
 ++i

 }
 else
 {
 inLanguage is FALSE // characters do NOT match

 }
 }
 catch (StackException e)
 {
 inLanguage is FALSE
 }
}
if (inLanguage & aStack.isEmpty())

aString is in the Language
else

aString is NOT in the Language

}

Implementations -- Abstract Data Type -- Stack

public interface StackInterface
{
 public boolean isEmpty();

public void popAll();
public void push (Object newItem) throws StackException;
public Object pop() throws StackException;
public Object peek() throws StackException;

}

public class StackException extends java.lang.RuntimeException
{
 public StackException (String s)
 {
 super (s);
 }
}

Array-Based Implementation

public class StackArrayBased implements StackInterface
{
 final int MAX_STACK = 50;
 private Object items[];
 private int top;

 public StackArrayBased()

 {
Items = new Object[MAX_STACK];
top = -1;

 }

public boolean isEmpty()
{

 return top < 0;
 }

 public boolean isFull()
 {
 return top == MAX_STACK – 1;
 }

}

Methods that throw StackException do not
have to be enclosed in try-catch blocks

See textbook for the remaining methods

required to implement a stack using an array

Defining the array “items” and the

“top” variable as private secures the

Array Based Stack’s abstraction, i.e.,

the “wall” are secure. The use of the

StackException provides an easy way

to control attempts to violate the Stack

ADT protocols

Defining the array “items” and the

“top” variable as private secures the

Array Based Stack’s abstraction, i.e.,

the “wall” are secure. The use of the

StackException provides an easy way

to control attempts to violate the Stack

ADT protocols

The items array hold only Objects so if

you want to store integers in the stack

they must be placed in their wrapper

classes, e.g., Integer for int, etc.

For Preconditions &

Postconditions see

the textbook

Reference-Based Implementation

public class StackReferenceBased implements StackInterface
{
 private Node top;

 StackReferenceBased ()
 {
 top = null;
 }

 public Boolean isEmpty ()
 {
 return top == null;
 }

 public void push (Object newItem)
 {
 top = new Node(newItem, top);
 }

}

See textbook for the remaining methods required to implement a stack using linked lists

List-Based Implementation

public interface ListInterface
{
 public boolean isEmpty();
 public int size();

}

public class ListReferenceBased implements ListInterface
{
 private Node head;
 private int numItems;

}

public class StackListBased implements StackInterface
{
 private ListInterface list;

 public StackListBased ()
 {
 list = new ListReferenceBased ();
 }

 public boolean isEmpty()
 {
 return list.isEmpty();
 }

 public void push(Object newItem)
 {
 List.add(0, newItem);
 }

}

See textbook for the remaining methods required

to define the interface (page 265, 3rd ed)

See textbook for the remaining methods required to

define the ListReferenceBased (page 265, 3rd ed)

See textbook for the remaining methods required to

define the StackListBased (page 370, 3rd ed)

See textbook for Comparing Implementations (page 371, 3rd ed)

Java Collections Framework

 Interface List

 Class Stack

public class Stack<E> extends Vector<E>
{

 public Stack();
 public boolean empty();
 public E peek() throws EmptyStackException;
 public E pop() throws EmptyStackException;
 public E push (E item);
 public int search(Object o);

}

import java.util.Stack;

public class TestStack
{

 static public void main(String [] args)
 {
 Stack<Integer> attack = new Stack<Integer>();

 }
}

See textbook for the remaining methods required to

complete the program (page 372-3, 3rd ed)

Evaluating Postfix Expressions

Operands push
Operators pop last two operands, apply operator to the operands, push result

234+* push 2, push 3, push 4, pop 4, pop 3, apply + to 3 & 4, push 7
27* pop 7, pop 2, apply * to 2 & 7 push 14

Converting Infix Expressions to Postfix Expressions

String postfixExp = null;

If you encounter

 an operand on the infixExp string, append it to the postfixExp

 “(“ on the infixExp string, push it on the stack

 an operator on the infixExp string,
o if stack is empty, push the operator on to the stack
o if stack is NOT empty, pop operators of greater or equal precedence

from the stack and append them to the postfixExp;
STOP when you encounter either

 a “(“ or
 an operator of lower precedence, or
 when the stack is empty

then push the operator on to the stack

 “)“on the infixExp string,
o pop operators off the stack &
o append them to the end of the postfixExp

until you encounter a matching “(“

 the end of the infixExp, append the remaining contents of the stack to
postfixExp

 Operands always stay in the same order with respect to one another

 Operators move only to the right of the operands

 Parentheses are removed only when no longer needed

See textbook for the pseudocode algorithm which converts infix expressions

to postfix expressions (page 378, 3rd ed)

See textbook for two solutions to a graph based search problem (pages 378-379, 3rd ed),

 one using stacks (pages 380-388, 3rd ed) and

 the other using recursion (pages 388-391, 3rd ed)

