Lecture
 Chapter 6
 Recursion
 as a
 Problem Solving Technique

Backtracking

1. Select, i.e., guess, a path of steps that could possibly lead to a solution
2. If the path leads to a dead end then retrace steps in the reverse order
3. Select a new sequence of steps that could possibly lead to a solution
4. If need be, go to \#2 above

Eight Queens Problem

- Chessboard
- 64 squares -- 8 rows x 8 columns
- Queen can attack any other piece
- within its row
- within its column
- along any diagonal
- place eight queens on the board such that no queen can attack any other queen,
- number of ways to arrange 8 queens on a 65 square board is $c(64,8)$
- $c(64,8)>4$ trillion
thus each row \& column contains exactly one queen
- attacks along rows or columns are not possible
- number of attacks to be checked along diagonals is $8!=40,320$

- Strategy 1

- Placing queens on the board in the following sequence yields a strategy which fails after five queens since column six is totally blocked

\mathbf{Q}_{1}	\bullet	\bullet	\bullet	\bullet	\bullet		
\bullet	\bullet	\bullet	\mathbf{Q}_{4}	\bullet	\bullet		
\bullet	\mathbf{Q}_{2}	\bullet	\bullet	\bullet	\bullet		
\bullet	\bullet	\bullet	\bullet	\mathbf{Q}_{5}	\bullet		
\bullet	\bullet	\mathbf{Q}_{3}	\bullet	\bullet	\bullet		
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		

- Backtrack by removing Q_{5} and finding a new location on column five.
- Placing Q_{5} in any cell on column five still eliminates any queens being placed in column six.
- Backtrack by removing $Q_{4} \& Q_{5}$ and finding new locations on both columns.

\mathbf{Q}_{1}	\bullet	\bullet	\bullet	\bullet	\bullet		
\bullet	\bullet	\bullet	\bullet	\mathbf{Q}_{5}	\bullet		
\bullet	\mathbf{Q}_{2}	\bullet	\bullet	\bullet	\bullet		
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		
\bullet	\bullet	\mathbf{Q}_{3}	\bullet	\bullet	\bullet		
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		
\bullet	\bullet	\bullet	\mathbf{Q}_{4}	\bullet	\bullet		
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		

A solution to the Eight Queens Problem

\mathbf{Q}_{1}	\bullet						
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\mathbf{Q}_{7}	\bullet
\bullet	\bullet	\bullet	\bullet	\mathbf{Q}_{5}	\bullet	\bullet	\bullet
\bullet	\mathbf{Q}_{8}						
\bullet	\mathbf{Q}_{2}	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\mathbf{Q}_{4}	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet	\mathbf{Q}_{6}	\bullet	\bullet
\bullet	\bullet	\mathbf{Q}_{3}	\bullet	\bullet	\bullet	\bullet	\bullet

Languages

- Set of all Java Programs $=\{$ all strings $\mathbf{w}: \mathbf{w}$ is a syntactically correct Java program $\}$ Java Compiler: program which determines
if a string \mathbf{w} is a syntactically correct Java program
- Set of all English Sentences =
$\{$ all strings $\mathbf{w}: \mathbf{w}$ is a syntactically correct English Sentences $\}$
Set of all English Grammar Rules: determines
if a sentence w is a syntactically correct English Sentence
- Set of all Algebraic Expressions =

$$
\{\text { all strings w : w is a syntactically correct Algebraic Expression }\}
$$

Set of all Algebraic Rules : determines
if a sentence w is a syntactically correct Algebraic Expression

- Grammar states the rules of a language
- recursive rules - computer languages
- non-recursive rules -- natural languages, e.g., English, Hungarian, etc.
- recognition algorithm - recursive algorithm based on the grammar which determines whether a given string is in the grammar

Identifiers

- $x \mid y \leftrightarrow x$ or y
- $x y \leftrightarrow x \bullet y \leftrightarrow \rightarrow x$ concatenated with y
- < symbol $>\rightarrow$ any sequence of symbols defined by the grammar

- recursive grammar
- <identifier> = <letter> | <identifier> <letter> | <identifier> <digit> | \$ <identifier> | _<identifier>
- <letter> = a|b|...|z|A|B|...|Z
- <digit> $=0|1| \ldots \mid 9$
- recognition grammar
- length(w) ==1 $\boldsymbol{\rightarrow} \mathbf{w}$ is an identifier if \mathbf{w} is a letter
- length $(w) \geq 1 \rightarrow w$ is an identifier if

1. last character of \mathbf{w} is either a letter or a digit
2. w minus the last character is an identifier
```
isld(in w: string) : boolean
    if ( length(w) == 1 )
    {
        if ( w is a letter ) return true
        else return false
    }
    else if ( last character of w is either a letter or a digit )
{
    return isld( w minus the last character )
}
else return false
```


Strings $A^{n} B^{n}$

- n consecutive A's followed by n consecutive B's
- AAAAABBBBB

$$
L=\left\{w: w \text { is of the form } A^{n} B^{n} \text { for some } n \geq 0\right\}
$$

- Grammar <legal-word > = empty string | A < legal-word > B
- Recognition algorithm

```
isAnBn(in w : string): Boolean
{
    if (length(w) == 0) return true
    else if ( w begins with A and ends with B )
    {
        return isAnBn( w minus first & last characters )
    }
    else return false
}
```


Algebraic Expressions

Binary Operators: +, -, *, /
Operands: single letter only

- Infix, Prefix, Postfix Expressions
- Infix
$>$ operand $_{1}$ operator operand ${ }_{2}$ e.g., $x+y$
$>$ associative rules
$\left.\begin{array}{ll}> & \text { precedence rules } \\ > & \text { use of parentheses }\end{array}\right\}$ avoid ambiguity
- Prefix
$>$ operator operand $_{1}$ operand $_{2}$ e.g., $+x$ y
$>$ infix $a+\left(b^{*} c\right) \rightarrow$ prefix $+a^{*} b \mathbf{c}$
$>$ infix $(a+b) * c \rightarrow$ prefix * $+a b c$
- Postfix
$>$ operand $_{1}$ operand $_{2}$ operator e.g., $\mathrm{x} y+$
$>$ infix $\mathrm{a}+\left(\mathrm{b}^{*} \mathrm{c}\right) \rightarrow$ postfix $\mathrm{abc}{ }^{*}+$
$>\operatorname{infix}(a+b) * c \rightarrow$ postfix $\quad a b+c$ *
> Conversion Infix to Prefix \&/or Postfix
- Infix \rightarrow fully parenthesized infix

$$
a+b^{*} c \rightarrow\left((a+b)^{*} c\right)
$$

- Fully Parenthesized Infix \rightarrow Prefix
$>$ Move each operator to the position marked by its open parenthesis

$$
\left.\left((a+b)^{*} c\right) \rightarrow{\underset{*}{*}}_{\binom{a}{a} c}\right)^{*}+a b c
$$

- Fully Parenthesized Infix \rightarrow Postfix
$>$ Move each operator to the position marked by its closed parenthesis $\left((a+b)^{*} c\right) \rightarrow\left(\begin{array}{ll}\left(\begin{array}{ll}a & b\end{array}\right) \rightarrow a b+c \\ + \\ *\end{array}\right.$

Prefix \& Postfix Expressions do not require

- associative rules
- precedence rules
- use of parentheses
to avoid ambiguity
- Prefix Grammar

$$
\begin{aligned}
& \text { <prefix> = <identifier> | <operator> <prefix><prefix> } \\
& \text { <operator> }=+\left|-\left.\right|^{*}\right| / \\
& \text { <identifier> }=\text { a } \mid \text { b }|\ldots| \text { z }
\end{aligned}
$$

To be Expanded Later in the Semester

- Postfix Grammar
<posfix> = <identifier> | <postfix> <postfix> <operator>
<operator> $=+|-|$ * $\mid /$
<identifier> $=\mathbf{a}|\mathbf{b}| \ldots \mid \mathbf{z}$
To be Expanded Later in the Semester

