
Lecture

Chapter 6

Recursion

as a

Problem Solving Technique

Backtracking
1. Select, i.e., guess, a path of steps that could possibly lead to a solution
2. If the path leads to a dead end then retrace ste ps in the reverse order
3. Select a new sequence of steps that could possib ly lead to a solution
4. If need be, go to #2 above

Eight Queens Problem
• Chessboard

o 64 squares -- 8 rows x 8 columns
o Queen can attack any other piece

� within its row
� within its column
� along any diagonal

o place eight queens on the board such that
no queen can attack any other queen,

o number of ways to arrange 8 queens on a 65 square b oard is c(64, 8)
� c(64, 8) > 4 trillion

thus each row & column contains exactly one queen
� attacks along rows or columns are not possible
� number of attacks to be checked along diagonals is 8! = 40,320

o Strategy 1
� Placing queens on the board in the following sequen ce yields a

strategy which fails after five queens since column six is totally
blocked
Q1 ● ● ● ● ●
● ● ● Q4 ● ●

● Q2 ● ● ● ●
● ● ● ● Q5 ●

● ● Q3 ● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ●

� Backtrack by removing Q 5 and finding a new location on column five.
� Placing Q 5 in any cell on column five still eliminates any qu eens being

placed in column six.
� Backtrack by removing Q 4 & Q5 and finding new locations on both

columns.

Q1 ● ● ● ● ●
● ● ● ● Q5 ●

● Q2 ● ● ● ●
● ● ● ● ● ●

● ● Q3 ● ● ●

● ● ● ● ● ●
● ● ● Q4 ● ●

● ● ● ● ● ●

A solution to the Eight Queens Problem

Q1 ● ● ● ● ● ● ●
● ● ● ● ● ● Q7 ●

● ● ● ● Q5 ● ● ●
● ● ● ● ● ● ● Q8

● Q2 ● ● ● ● ● ●

● ● ● Q4 ● ● ● ●
● ● ● ● ● Q6 ● ●

● ● Q3 ● ● ● ● ●

Languages
• Set of all Java Programs = all strings w : w is a syntactically correct Java program

Java Compiler : program which determines

if a string w is a syntactically correct Java program

• Set of all English Sentences =

 all strings w : w is a syntactically correct English Sentences

Set of all English Grammar Rules : determines

if a sentence w is a syntactically correct English Sentence

• Set of all Algebraic Expressions =

 all strings w : w is a syntactically correct Algebraic Expression

Set of all Algebraic Rules : determines

if a sentence w is a syntactically correct Algebraic Expression

• Grammar states the rules of a language
o recursive rules – computer languages
o non-recursive rules -- natural languages, e.g., En glish, Hungarian, etc.

• recognition algorithm – recursive algorithm based o n the grammar

which determines whether a given string is in the g rammar

Identifiers
• x | y �������� x or y
• x y �������� x ● y �������� x concatenated with y
• < symbol > ���� any sequence of symbols defined by the grammar

letter identifier

 letter, digit
 underscore __
 dollar sign $

• recursive grammar
o <identifier> = <letter> | <identifier> <letter> | < identifier> <digit> |

 $ <identifier> | _<identifier>
o <letter> = a | b | … | z | A | B | … | Z… | z | A | B | … | Z… | z | A | B | … | Z… | z | A | B | … | Z
o <digit> = 0 | 1 | … | 9 … | 9 … | 9 … | 9

• recognition grammar

o length(w) == 1 ���� w is an identifier if w is a letter
o length(w) ≥ 1 ���� w is an identifier if

1. last character of w is either a letter or a digi t
2. w minus the last character is an identifier

isId(in w: string) : boolean

 if (length(w) == 1)
 {
 if (w is a letter) return true
 else return false
 }
 else if (last character of w is either a letter or a digit)
 {
 return isId(w minus the last character)

 }
 else return false

Syntax Diagram

Strings A n Bn
• n consecutive A’s followed by n consecutive B’s
• AAAAABBBBB

L = w : w is of the form A n Bn for some n ≥ 0

• Grammar <legal-word > = empty string | A < legal-w ord > B

• Recognition algorithm

isAnBn(in w : string) : Boolean
{
 if (length(w) == 0) return true
 else if (w begins with A and ends with B)
 {
 return isAnBn(w minus first & last characters)
 }
 else return false
}

Algebraic Expressions
 Binary Operators: +, -, *, /
 Operands: single letter only

• Infix, Prefix, Postfix Expressions
o Infix

� operand 1 operator operand 2 e.g., x + y
� associative rules
� precedence rules avoid ambiguity
� use of parentheses

o Prefix

� operator operand 1 operand 2 e.g., + x y
� infix a + (b * c) ���� prefix + a * b c
� infix (a + b) * c ���� prefix * + a b c

o Postfix

� operand 1 operand 2 operator e.g., x y +
� infix a + (b * c) ���� postfix a b c * +
� infix (a + b) * c ���� postfix a b + c *

� Conversion Infix to Prefix &/or Postfix
o Infix ���� fully parenthesized infix

 a + b * c ���� ((a + b) * c)
o Fully Parenthesized Infix ���� Prefix

� Move each operator to the position marked by its open parenthesis
 ((a + b) * c) ���� ((a b) c) ���� * + a b c
 * +

o Fully Parenthesized Infix ���� Postfix

� Move each operator to the position marked by its closed parenthesis
 ((a + b) * c) ���� ((a b) c) ���� a b + c *
 + *

• Prefix Grammar
 <prefix> = <identifier> | <operator> <prefix><pre fix>
 <operator> = + | - | * | /
 <identifier> = a | b | ………… | z

• Postfix Grammar
 <posfix> = <identifier> | <postfix> <postfix> <op erator>
 <operator> = + | - | * | /
 <identifier> = a | b | ………… | z

To be Expanded Later in the Semester

Prefix & Postfix Expressions do not require
• associative rules
• precedence rules
• use of parentheses

to avoid ambiguity

To be Expanded Later in the Semester

