Lecture Chapter 6 Recursion as a Problem Solving Technique

Backtracking

- 1. Select, i.e., guess, a path of steps that could possibly lead to a solution
- 2. If the path leads to a dead end then retrace steps in the reverse order
- 3. Select a new sequence of steps that could possibly lead to a solution
- 4. If need be, go to #2 above

Eight Queens Problem

- Chessboard
 - 64 squares -- 8 rows x 8 columns
 - Queen can attack any other piece
 - within its row
 - within its column
 - along any diagonal
 - $\circ \quad$ place eight queens on the board such that

no queen can attack any other queen,

- o number of ways to arrange 8 queens on a 65 square board is c(64, 8)
 - c(64, 8) > 4 trillion
 - thus each row & column contains exactly one queen
 - attacks along rows or columns are not possible
 - number of attacks to be checked along diagonals is 8! = 40,320

- o Strategy 1
 - Placing queens on the board in the following sequence yields a strategy which fails after five queens since column six is totally blocked

Q ₁	•	•	•	•	•	
•	•	•	Q_4	•	•	
٠	Q_2	•	•	•	•	
•	•	•	•	Q_5	٠	
•	•	Q_3	•	•	٠	
٠	•	•	•	•	٠	
•	•	•	•	•	٠	
•	•	•	•	•	٠	

- Backtrack by removing Q₅ and finding a new location on column five.
- Placing Q₅ in any cell on column five still eliminates any queens being placed in column six.
- Backtrack by removing Q₄ & Q₅ and finding new locations on both columns.

Q ₁	•	•	•	•	٠	
•	•	•	•	Q_5	•	
•	Q_2	•	•	•	٠	
•	•	•	•	•	٠	
•	•	Q_3	•	•	٠	
•	•	•	•	•	٠	
•	•	•	Q_4	•	٠	
•	•	•	•	•	٠	

A solution to the Eight Queens Problem

Q ₁	•	•	•	•	•	•	•
•	•	•	•	•	•	Q ₇	•
•	•	•	•	Q_5	•	•	•
•	•	•	•	•	•	•	Q_8
•	Q_2	•	•	•	•	•	•
•	•	•	Q_4	•	•	•	•
•	•	•	•	•	Q_6	•	•
•	•	Q_3	•	•	•	•	•

Languages

• Set of all Java Programs = {all strings w : w is a syntactically correct Java program}

Java Compiler : program which determines

if a string w is a syntactically correct Java program

• Set of all English Sentences =

 $\left\{ \text{ all strings } \mathbf{w} : \mathbf{w} \text{ is a syntactically correct English Sentences } \right\}$

Set of all English Grammar Rules : determines

if a sentence ${\boldsymbol w}$ is a syntactically correct English Sentence

 Set of all Algebraic Expressions =
 { all strings w : w is a syntactically correct Algebraic Expression }

Set of all Algebraic Rules : determines

if a sentence ${\boldsymbol w}$ is a syntactically correct Algebraic Expression

- Grammar states the rules of a language
 - recursive rules computer languages
 - o non-recursive rules -- natural languages, e.g., English, Hungarian, etc.
- recognition algorithm recursive algorithm based on the grammar which determines whether a given string is in the grammar

Identifiers

- x | y ←→ x or y
- $x y \leftrightarrow x \bullet y \leftrightarrow x$ concatenated with y
- < symbol > → any sequence of symbols defined by the grammar

- recursive grammar
 - o <identifier> = <letter> | <identifier> <letter> | <identifier> <digit> | \$ <identifier> | _<identifier>
 - \circ <letter> = a | b | ... | z | A | B | ... | Z
 - <digit> = 0 | 1 | ... | 9

• recognition grammar

- length(w) == 1 \rightarrow w is an identifier if w is a letter
- length(w) \ge 1 → w is an identifier if
 - 1. last character of w is either a letter or a digit
 - 2. w minus the last character is an identifier

```
isld(in w: string) : boolean
if ( length(w) == 1 )
{
    if ( w is a letter ) return true
    else return false
}
else if ( last character of w is either a letter or a digit )
{
    return isld( w minus the last character )
}
else return false
```

```
else return false
```

Strings Aⁿ Bⁿ

- n consecutive A's followed by n consecutive B's
- AAAAABBBBB

```
L = {w : w is of the form A<sup>n</sup> B<sup>n</sup> for some n ≥ 0}
Grammar <legal-word > = empty string | A < legal-word > B
Recognition algorithm
isAnBn(in w : string) : Boolean
{
    if ( length(w) == 0 ) return true
    else if ( w begins with A and ends with B )
    {
      return isAnBn( w minus first & last characters )
    }
    else return false
}
```

Algebraic Expressions

Binary Operators: +, -, *, / Operands: single letter only

- Infix, Prefix, Postfix Expressions
 - o Infix
 - operand₁ operator operand₂ e.g., x + y
 - associative rules
 - > precedence rules
 > avoid ambiguity
 - ➢ use of parentheses J
 - o Prefix
 - > operator operand₁ operand₂ e.g., + x y
 - > infix $a + (b * c) \rightarrow prefix + a * b c$
 - ➢ infix (a + b) * c → prefix * + a b c
 - Postfix
 - > operand₁ operand₂ operator e.g., x y +
 - ➢ infix a + (b * c) → postfix a b c * +
 - > infix (a + b) * c → postfix a b + c*

- > Conversion Infix to Prefix &/or Postfix
 - \circ Infix \rightarrow fully parenthesized infix

- Fully Parenthesized Infix → Prefix
 - Move each operator to the position marked by its open parenthesis ((a+b)*c)→((a b) c)→*+abc * +
- Fully Parenthesized Infix → Postfix
 - Move each operator to the position marked by its closed parenthesis ((a+b)*c)→((a b) c)→ ab+c*

+

Prefix & Postfix Expressions do not require

- associative rules
- precedence rules
- use of parentheses

to avoid ambiguity

• Prefix Grammar

<prefix> = <identifier> | <operator> <prefix><prefix><operator> = + | - | * | /identifier> = a | b | ... | z

To be Expanded Later in the Semester

• Postfix Grammar

<posfix> = <identifier> | <postfix> <postfix> <operator> <operator> = + | - | * | / <identifier> = a | b | ... | z

To be Expanded Later in the Semester