
Lecture

Chapter 2

Software Development

Large Software Projects

 Software Design

o Team of programmers

o Cost effective development

 Organization

 Communication

Problem Solving

 Analysis of the problem

 Multiple solutions

 Selection of the best solution

o Software solution

 Algorithms

 Step by step specification of the method

 Data collection & storage

 Organize the data in a manner that facilitates use

o Personnel solution

 Implementation of the solution

 Acceptance of the solution

Software Life Cycle

Specification

Design

Risk Analysis

Verification

Coding

Testing

Refining

Production

Maintenance

Incremental &/or Iterative development

Life Cycle

Specification

 Specify all aspects of the problem

 Communicate with non-programmers

 Clarify unclear aspects of the specifications

 Determine

 valid input data

 appropriate error messages

 user base

 appropriate interface

 output required

 output format

 appropriate documentation

 Specify potential future enhancements

 Create a prototype program for user approval

Design

 Identify and design modules – objects

 Classes should be designed so that the objects are

 loosely coupled

 highly cohesive

 Interactions between objects

 Messages – method calls – data flows -- information flow

 Specify, in detail, the assumptions, input, and output for each method

 What data within the object is utilized by the method

 What does the method assume

 What actions are performed by the method

 How is the data changed by the method

 Specifications serve as a contract between method & the outside

 Contract serves to

 systematically decompose the program into smaller tasks

 delineate responsibilities among programmers &/or modules

 Precondition

o the conditions that must exist at the beginning of a method

 Postcondition

o the conditions that will exist at the end of the method

Tightly coupled objects

 High flow of information between objects

Loosely coupled objects

 Changes in one object will have minimal effect on the other objects

Highly cohesive objects perform only one well-designed task

Sufficient time spent in design  less time required in implementation

Reuse of Software Components

Java Application Interface

Risk Analysis

 all projects

 specific projects

 known risks

 unknown risks

 affects

o timetable

o costs

o life

o health

 techniques to identify, assess, and manage some risks

Verification

Useful Aspects Of The Verification Process

 assertion – statement regarding a condition at a specified point in an algorithm

o Java assertion statements – check the Jgrasp assertion feature

 invariant – condition that is always true a a specified point in a program

o loop invariant – always true before & after each loop execution

 proving an algorithm is correct

o proving each step of the algorithm is correct, i.e.,

for all appropriate assertions,

an assertion before the step remains the same after the step is executed

o errors encountered during the process should be corrected and the

specifications modified if appropriate

Coding

 Translating the design into a particular programming language

 Not a major portion of the life cycle for most projects

Testing

 Bottom Up Testing

 Range Limits

 Idiot Proof

Refining the Original Solution

 Retesting

formal methods for proving algorithms correct are incomplete

The result is less errors encountered during the programming

The phases of the Life Cycle are

 not completely isolated from one another and

 not linear

Installation

 Acceptance Testing

Production

 Black Box Cutover

 Parallel Testing

Maintenance

 Users detect errors

 Request

o enhancements, i.e., require more features

o modifications to the existing software to better serve the users

Fredrick Brooks

Mythical Man-Month

 Ten Pounds in a Five Pound Bag

 First Solution -- Second Solution

First solution is based on some simplifying assumptions

Refined solution provides a sophisticated program that meets the original program

specifications

Good Solution – Computer Program

 performs specified task

 real tangible cost

o total cost over all phases of the life cycle + the burial costs

o efficiency – choice of a solutions components

 algorithms

 choice of data structure & storage

o code reusability

 code libraries & open source repositories

 components developed within a project

 reused multiple times in the same projects

 reused unchanged in other projects

 embedded in other components

Abstraction

 Procedural Abstraction

o embed procedure in a “Black Box”, i.e., a module, a class, an object

o users of the procedure know it’s pre and post conditions, but not

how it performs its tasks

o separates the purpose of a method from its implementation

o helps to segment the design into loosely coupled and highly cohesive modules

o Java API, e.g., Math.abs(), Math.tan(), etc.

 Data Abstraction

o collection of data

o set of operations on that data, with a focus on

 what the operations will do to the data

 without any consideration of how to implement them

 Abstract Data Type (ADT)

o collection of data

o specification of the set of operations that can manipulate that data

o implemented by defining data structures and creating methods in a

selected computer language

 Problem Solving

o Develop ADT’ s and algorithms at the same time

o Global Algorithm  support algorithms and ADT’s (top-down design)

o Collection of feasible ADT’s and related algorithms 

Set of Potential Global Algorithms (bottom-up design)

o Algorithms  clever data structure solution

o Data Structure  clever algorithm solution

 Information Hiding

o Abstraction 

 write a specification that describes the outside, i.e., public view of a

module

 identify details that should remain private, i.e., should be hidden

from the public view

User of a Module  do not worry about the implementation details.

Implementer of a Module  do not worry about the use of the module.

Object Oriented Design

Object

 encapsulates

o data

o actions

 identification

o nouns  objects

o verbs  actions

o objects of the same type  class

 inheritance – classes can inherit properties from other classes

 polymorphism

o objects can determine appropriate operations at execution time

o the outcome of a particular operation depends upon the objects being

acted upon

 functional decomposition (top-down design)

o break a task into smaller subtasks

o structure chart (Prichard 3rd ed pg 101)

General Design Guidelines

1. Use Object-Oriented Design (OOD), i.e., objects & ADTs, and Functional

Decomposition (FD), i.e., algorithmic structure charts, to produce modular

solutions

2. Use OOD for problems that primarily involve data

3. Use FD to design algorithms for an objects operations

4. As a first approach, use FD to design solutions to problems that emphasize

algorithms over data. During the design process, keep watch for signs that

the OOD approach would yield better results.

5. Keep the focus on WHAT when designing ADTs & algorithms

6. Incorporate reusable software components into the design where possible

Unified Modeling Language (UML)

data members

 visibility name: type = defaultValue

 --, + hour: integer = 1

 operations

 visibility name(parameter-list); return-type {property-string}

 -, +

 parameter-list

 direction name: type = defaultValue

 in, out getHour: integer = 1

 + setTime(in hr: integer, in min: integer, in sec: integer): void

Class Name

Data Items

Operations

(Methods)

 1

 1

Bank

-name: string

- routingNum: integer

-createAccount()

Account

-accountNum: integer

- balance: float

+getBalance() {query}

+withdraw()

+deposit()

Customer

-custname: string

- address: string

Cardinality

one to many

Containment

Checking

-chargePerCheck: float

- numCheck: integer

-minBalance: float

-createAccount()

Savings

-interestRate: float

+getBalance() {query}

Object-Oriented Programming

 time expended on design will increase

 solution will be more general than is absolutely necessary

 implementation time will be reduced

 improved program maintenance and verification stages

o change in ancestor class  change in all descendant classes

o add descendant classes that do not affect the ancestor class

o add descendant classes modifies the ancestor’s original behavior

Design Procedure

 specification of each class including data and operations

 implementation of each class

 identify families of related classes

o identify the ancestor class

o implement the descendant classes

 test each class

o write test program to exercise each operation wrt specifications

o write test programs to exercise sets of classes working together to

solve a larger programs (expands up to the set which encompasses

the entire project)

Key Programming Issues

 Modularity

o Programming tasks become more difficult as the size and complexity

of a program grows; modularity reduces the rate at which the

difficulty grows

o Permits team programming, i.e., permits the continuation of current

programming efforts

o Isolates errors; debugging a modular program is reduced to

debugging many small programs

o Facilitates reading the program

o Isolates modifications; modifying modular program is reduced to a

small set of relatively simple modifications to isolated parts of the

program

o Eliminates redundant code

 Modifiability

 Ease of Use

Strive for modularity in all phases of the program-solving problem

 Fail-Safe Programming

o Input Errors Prohibited by Code

o Logic Errors Eliminated by EXTENSIVE Testing

o Hardware Errors Eliminated

 Hardened Hardware – Isolated Power Sources

 Multiple Systems Voting on Outcomes

o Life-Support Systems

o Financial Systems

 Idiot-Proof Programming

o Prichard 3rd ed pgs 112-116

 Style

o Extensive Use of Methods

o Private Data Fields

 accessor methods

 mutator methods

o Error Handling

o Readability

 good structure & design

 well-chosen identifiers that describe their purpose

 readable indentation

 next-line blocks

 DO NOT USE end-of-line blocks

 2-4 spaces

 beware of rightward drift

 blank lines to separate modules, methods, blocks, etc.

 well-chosen documentation

Program Documentation

1. Program Comment

a. Statement of Purpose

b. Author & Date

c. Description of Input/Output

d. Description of how to Use the Program

e. Assumptions about the type of data expected

f. Statement of Exceptions

g. Brief Description of the Major Classes

2. Comment in Each Class

a. Statement of Purpose

b. Description of the Data contained in the Class

3. Comment at the Beginning of Each Method

a. Statement of Purpose

b. Preconditions

c. Postconditions

d. Method Called

4. Comments in the Bodies of Selected Methods that explain important

features or subtle logic



 Debugging

o Debugger

 step by step

 breakpoints

o System.out.println(…) statements

o Use the invariants established for various parts of the program

o Dump selected data structures, e.g., arrays

Write the Documentation While Writing the Code
Make sure that you write

Comments for Users of the Methods

and

Comments for Programmers who will revise the Implementations

