
Lecture

Chapter 2

Software Development

Large Software Projects

 Software Design

o Team of programmers

o Cost effective development

 Organization

 Communication

Problem Solving

 Analysis of the problem

 Multiple solutions

 Selection of the best solution

o Software solution

 Algorithms

 Step by step specification of the method

 Data collection & storage

 Organize the data in a manner that facilitates use

o Personnel solution

 Implementation of the solution

 Acceptance of the solution

Software Life Cycle

Specification

Design

Risk Analysis

Verification

Coding

Testing

Refining

Production

Maintenance

Incremental &/or Iterative development

Life Cycle

Specification

 Specify all aspects of the problem

 Communicate with non-programmers

 Clarify unclear aspects of the specifications

 Determine

 valid input data

 appropriate error messages

 user base

 appropriate interface

 output required

 output format

 appropriate documentation

 Specify potential future enhancements

 Create a prototype program for user approval

Design

 Identify and design modules – objects

 Classes should be designed so that the objects are

 loosely coupled

 highly cohesive

 Interactions between objects

 Messages – method calls – data flows -- information flow

 Specify, in detail, the assumptions, input, and output for each method

 What data within the object is utilized by the method

 What does the method assume

 What actions are performed by the method

 How is the data changed by the method

 Specifications serve as a contract between method & the outside

 Contract serves to

 systematically decompose the program into smaller tasks

 delineate responsibilities among programmers &/or modules

 Precondition

o the conditions that must exist at the beginning of a method

 Postcondition

o the conditions that will exist at the end of the method

Tightly coupled objects

 High flow of information between objects

Loosely coupled objects

 Changes in one object will have minimal effect on the other objects

Highly cohesive objects perform only one well-designed task

Sufficient time spent in design less time required in implementation

Reuse of Software Components

Java Application Interface

Risk Analysis

 all projects

 specific projects

 known risks

 unknown risks

 affects

o timetable

o costs

o life

o health

 techniques to identify, assess, and manage some risks

Verification

Useful Aspects Of The Verification Process

 assertion – statement regarding a condition at a specified point in an algorithm

o Java assertion statements – check the Jgrasp assertion feature

 invariant – condition that is always true a a specified point in a program

o loop invariant – always true before & after each loop execution

 proving an algorithm is correct

o proving each step of the algorithm is correct, i.e.,

for all appropriate assertions,

an assertion before the step remains the same after the step is executed

o errors encountered during the process should be corrected and the

specifications modified if appropriate

Coding

 Translating the design into a particular programming language

 Not a major portion of the life cycle for most projects

Testing

 Bottom Up Testing

 Range Limits

 Idiot Proof

Refining the Original Solution

 Retesting

formal methods for proving algorithms correct are incomplete

The result is less errors encountered during the programming

The phases of the Life Cycle are

 not completely isolated from one another and

 not linear

Installation

 Acceptance Testing

Production

 Black Box Cutover

 Parallel Testing

Maintenance

 Users detect errors

 Request

o enhancements, i.e., require more features

o modifications to the existing software to better serve the users

Fredrick Brooks

Mythical Man-Month

 Ten Pounds in a Five Pound Bag

 First Solution -- Second Solution

First solution is based on some simplifying assumptions

Refined solution provides a sophisticated program that meets the original program

specifications

Good Solution – Computer Program

 performs specified task

 real tangible cost

o total cost over all phases of the life cycle + the burial costs

o efficiency – choice of a solutions components

 algorithms

 choice of data structure & storage

o code reusability

 code libraries & open source repositories

 components developed within a project

 reused multiple times in the same projects

 reused unchanged in other projects

 embedded in other components

Abstraction

 Procedural Abstraction

o embed procedure in a “Black Box”, i.e., a module, a class, an object

o users of the procedure know it’s pre and post conditions, but not

how it performs its tasks

o separates the purpose of a method from its implementation

o helps to segment the design into loosely coupled and highly cohesive modules

o Java API, e.g., Math.abs(), Math.tan(), etc.

 Data Abstraction

o collection of data

o set of operations on that data, with a focus on

 what the operations will do to the data

 without any consideration of how to implement them

 Abstract Data Type (ADT)

o collection of data

o specification of the set of operations that can manipulate that data

o implemented by defining data structures and creating methods in a

selected computer language

 Problem Solving

o Develop ADT’ s and algorithms at the same time

o Global Algorithm support algorithms and ADT’s (top-down design)

o Collection of feasible ADT’s and related algorithms

Set of Potential Global Algorithms (bottom-up design)

o Algorithms clever data structure solution

o Data Structure clever algorithm solution

 Information Hiding

o Abstraction

 write a specification that describes the outside, i.e., public view of a

module

 identify details that should remain private, i.e., should be hidden

from the public view

User of a Module do not worry about the implementation details.

Implementer of a Module do not worry about the use of the module.

Object Oriented Design

Object

 encapsulates

o data

o actions

 identification

o nouns objects

o verbs actions

o objects of the same type class

 inheritance – classes can inherit properties from other classes

 polymorphism

o objects can determine appropriate operations at execution time

o the outcome of a particular operation depends upon the objects being

acted upon

 functional decomposition (top-down design)

o break a task into smaller subtasks

o structure chart (Prichard 3rd ed pg 101)

General Design Guidelines

1. Use Object-Oriented Design (OOD), i.e., objects & ADTs, and Functional

Decomposition (FD), i.e., algorithmic structure charts, to produce modular

solutions

2. Use OOD for problems that primarily involve data

3. Use FD to design algorithms for an objects operations

4. As a first approach, use FD to design solutions to problems that emphasize

algorithms over data. During the design process, keep watch for signs that

the OOD approach would yield better results.

5. Keep the focus on WHAT when designing ADTs & algorithms

6. Incorporate reusable software components into the design where possible

Unified Modeling Language (UML)

data members

 visibility name: type = defaultValue

 --, + hour: integer = 1

 operations

 visibility name(parameter-list); return-type {property-string}

 -, +

 parameter-list

 direction name: type = defaultValue

 in, out getHour: integer = 1

 + setTime(in hr: integer, in min: integer, in sec: integer): void

Class Name

Data Items

Operations

(Methods)

 1

 1

Bank

-name: string

- routingNum: integer

-createAccount()

Account

-accountNum: integer

- balance: float

+getBalance() {query}

+withdraw()

+deposit()

Customer

-custname: string

- address: string

Cardinality

one to many

Containment

Checking

-chargePerCheck: float

- numCheck: integer

-minBalance: float

-createAccount()

Savings

-interestRate: float

+getBalance() {query}

Object-Oriented Programming

 time expended on design will increase

 solution will be more general than is absolutely necessary

 implementation time will be reduced

 improved program maintenance and verification stages

o change in ancestor class change in all descendant classes

o add descendant classes that do not affect the ancestor class

o add descendant classes modifies the ancestor’s original behavior

Design Procedure

 specification of each class including data and operations

 implementation of each class

 identify families of related classes

o identify the ancestor class

o implement the descendant classes

 test each class

o write test program to exercise each operation wrt specifications

o write test programs to exercise sets of classes working together to

solve a larger programs (expands up to the set which encompasses

the entire project)

Key Programming Issues

 Modularity

o Programming tasks become more difficult as the size and complexity

of a program grows; modularity reduces the rate at which the

difficulty grows

o Permits team programming, i.e., permits the continuation of current

programming efforts

o Isolates errors; debugging a modular program is reduced to

debugging many small programs

o Facilitates reading the program

o Isolates modifications; modifying modular program is reduced to a

small set of relatively simple modifications to isolated parts of the

program

o Eliminates redundant code

 Modifiability

 Ease of Use

Strive for modularity in all phases of the program-solving problem

 Fail-Safe Programming

o Input Errors Prohibited by Code

o Logic Errors Eliminated by EXTENSIVE Testing

o Hardware Errors Eliminated

 Hardened Hardware – Isolated Power Sources

 Multiple Systems Voting on Outcomes

o Life-Support Systems

o Financial Systems

 Idiot-Proof Programming

o Prichard 3rd ed pgs 112-116

 Style

o Extensive Use of Methods

o Private Data Fields

 accessor methods

 mutator methods

o Error Handling

o Readability

 good structure & design

 well-chosen identifiers that describe their purpose

 readable indentation

 next-line blocks

 DO NOT USE end-of-line blocks

 2-4 spaces

 beware of rightward drift

 blank lines to separate modules, methods, blocks, etc.

 well-chosen documentation

Program Documentation

1. Program Comment

a. Statement of Purpose

b. Author & Date

c. Description of Input/Output

d. Description of how to Use the Program

e. Assumptions about the type of data expected

f. Statement of Exceptions

g. Brief Description of the Major Classes

2. Comment in Each Class

a. Statement of Purpose

b. Description of the Data contained in the Class

3. Comment at the Beginning of Each Method

a. Statement of Purpose

b. Preconditions

c. Postconditions

d. Method Called

4. Comments in the Bodies of Selected Methods that explain important

features or subtle logic

 Debugging

o Debugger

 step by step

 breakpoints

o System.out.println(…) statements

o Use the invariants established for various parts of the program

o Dump selected data structures, e.g., arrays

Write the Documentation While Writing the Code
Make sure that you write

Comments for Users of the Methods

and

Comments for Programmers who will revise the Implementations

