
Lecture

Chapter 10

Algorithm Efficiency & Sorting

Measuring Algorithm Efficiency

• not coding, i.e., implementation
• not platforms, i.e., computer systems
• not the data sets

Algorithm A is of the order f(n), i.e., O(f(n))
If there exists constants k & n 0 such that
A produces a solution to a problem of size n >= n 0
within k * f(n) time units

e.g., f(n) = n 2 - 3*n -10

 if k = 3 & n 0 = 2 then

for all n >= 2
 3*n2 > n2 - 3*n -10

 hence f(n) is of order O(n 2)

e.g., Linked List
 displaying/searching the first n items requires
 (n + 1)*(a + c) + n*w time units

 for n >= 1

(2*a + 2*c + w)*n >= (n + 1)*(a + c) + n*w

 hence the task is of order O(n)

e.g., Towers of Hanoi
 solution requires (2 n + 1) * m time units
 for n >= 1
 m * 2n > (2n + 1) * m

 hence the solution is O(2 n)

Order of Growth Rates

• largest order term absorbs smaller order terms
• multiplicative and additive constants are absorbed by higher order terms
• O(f(n)) + O(g(n)) = O(f(n) + g(n))

• but the execution time of the algorithm as measured by
the number of operations required by the algorithm

growth rate function

O(1) < O(log n) < O(n) < O(n * log n) < O(n2) < O(n3) < O(2n)

Worst Case Analysis

Average Case Analysis

An application’s

• structure
• size
• execution time requirements
• memory size requirements

will often dictate the appropriate solution

algorithms used to solve large problems ���� order of magnitude analysis

