
Lecture Notes

Chapter #5

Methods

1. Method –

a. group of statements, bundled together, designed to perform a specific

function

b. may be reused many times

i. in a particular program or

ii. in multiple programs

2. Examples – from the Java Library

a. System.out.println()

b. JOptionPane.showMessageDialog()

c. Integer.parseInt()

d. Math.random()

3. Defining a Method

modifiers return type parameters (formal placeholders)

public static int max(int n1, int n2)

{

 int result;

 if(n1 > n2) result = n1;

 else result = n2;

 return result;

}

Remark: Methods are defined outside of the main() program!

4. Invoking, i.e., “calling”, a Method

 public static void main(String []args)

 {

 int x, y;

 // input values for x and y;

 int z = max(x, y); values of the actual parameters, i.e., arguments

 // output the z value;

 }

Remark: Methods are called inside of the main() program!

block of code
 constitutes
the
method body

return statement required for non-void methods

5. Method Return Types

a. Void Methods -- public static void main(String []args)

b. Value Returning Methods – Math.random, public static int max(int, int)

6. Formal Parameters

parameters (formal placeholders)

parameter list – type, order, number of parameters

Method Signature: int max(int, int);

i.e., method name + parameter list

Method Header: public static int max(int, int)

Remark:

Each data type in the parameter list must be separately declared, i.e.,

public static int max(int n1, int n2)

not

public static int max(int n1, n2)

7. Alternative Names for Methods

a. Value-Returning Method  Function

b. Void Method  Procedure

8. Calling a Method -- Revisited

 a. Value-Returning Method  Function

If the method returns a value, the call to the method is usually treated

as a value, e.g.,

 int z = max(x, y);

However, it is permissible to call value-returning method as a statement,

if the return value is of no interest to the calling program.

 b. Void Method  Procedure

If the method returns a void, the call must be in the form of a

statement, e.g.,

System.out.println(“This is the correct way”);

return statements are required for value-returning methods

9. Placement of Methods

If the method is to be used only in the current program, then place

it in the same class, i.e., file, as the program, e.g.,

public class TestMax

{

 public static void main(String [] args)

 {

 int i = 5;

 int j = 2;

 int k = myMax(i, j);

 System.out.println(“Max of “ + i + “ and “ + j + “: “ +k);

 }

}

public static int myMax(int n1, int n2)

{

 int result;

 if(n1 > n2) result = n1;

 else result = n2;

 return result;

}

If the method is to be used in other programs, place it in another

class, i.e., file, with a different descriptive name. For instance

place the method,

 public static int myMax(int n1, int n2)

 {

 int result;

 if(n1 > n2) result = n1;

 else result = n2;

 return result;

 }

in a class, i.e., file, MyMathStuff; the method call then be invoked

by any other program in your account as

int z = MyMathStuff.myMax(x, y);

10. Call Stacks

A stack is, simply, an area of memory in which information is stored

and retrieved in a last-in, first-out, i.e., FIFO, manner.

The storage of dinner plates is normally accomplished by placing one

plate on top of another. In this case, the set of plates are usually

treated as a stack, i.e., a clean plate is placed on the top of the stack

and when a plate is required for service, it is the plate on the top of the

stack which is retrieved. It is the FIFO action and the storage structure

which constitutes a stack.

When a method is called, the execution of the calling program must be

suspended, and the called method is allowed to execute.

When any method is called, including the main method, the stack

allocates an area at the top of the stack to store information relevant

to that method. Thus as each executing method calls another method,

the stack allocates additional area at the top of the stack for that

method. The area allocated to each method is often referred to as a

“frame” and common terminology is that a frame is “pushed” onto the

stack.

When a method finishes executing, execution returns to the calling

method and the area reserved for the completed method is deallocated,

i.e., the frame is “popped off” the stack, or the stack is “popped”.

Empty
Stack

Main
Method
Frame

k: _
j: 2
i: 5

Main
Method
Frame

k: _
j: 2
i: 5

Main
Method
Frame

k: 5
j: 2
i: 5

Main
Method
Frame

k: 5
j: 2
i: 5

Max
Method
Frame

result: 5
n1: 2
n2: 5

Max
Method
Frame

result: _
n1: 2
n2: 5

Stack Pointers

11. Void Method

public class VoidTestMethod

{

 public static void main(String [] args)

 {

 double numberGrade;

 // input value for numberGrade

 System.out.print(“Number Grade: “ + numberGrade + “\tLetter Grade: “);

 printGrade(numberGrade);

 }

}

public static void printGrade(double Score)

{

 if ((score < 0) || (score > 100))

 {

 System.out.println(“Invalid Score”);

 return;

 }

 if (score >= 90.0) System.out.println(„A‟);

 else if (score >= 80.0) System.out.println(„B‟);

 else if (score >= 70.0) System.out.println(„C‟);

 else if (score >= 60.0) System.out.println(„D‟);

 else System.out.println(„F‟);

}

12. Passing Parameters

a. Parameter Order Association – Pattern Matching

The arguments provided to a called method MUST be in the same order,

be of a compatible type and, unless otherwise specified, be of the same

number as that of the method‟s definition. Compatible type means

passing without explicit casting!

Given the method definition

public static void nPrintMessage(String message, int n)

{

 for (int i = 0; i < n; i++) System.out.println(message);

}

the calling statement nPrintMessage(v, w);

is valid only if v is of type String and w is of type int.

The statement nPrintMessage(15, “hello”); will fail!

b. Pass-by-Value

 public class Increment

 {

 public static void main(String [] args)

 {

int x = 1;

System.out.println(x);

increment(x);

System.out.println(x);

 }

public static void increment(int n)

{

 n++;

 System.out.println(n);

}

 }

Output: 1, 2, 1

public static void swap(n1, n2)

 {

 int temp = n1;

 n1 = n2;

 n2 = temp;

 }

13. Modular Code

a. Reduce redundant code

b. Enable the reuse of code

c. Improve program quality

d. Enables the modification of the modular code independently from the

various programs that use the modular code, e.g., Math.random()

Empty
Stack

Main
Method
Frame

j: 2
i: 5

Main
Method
Frame

j: 2
i: 5

Main
Method
Frame

j: 2
i: 5

Main
Method
Frame

j: 2
i: 5

Max
Method
Frame

 temp: 2

n1: 5
n2: 2

Swap
Method
Frame

 temp: _

n1: 2
n2: 5

Stack Pointers

public static int gcd(int n1, int n2)

{

 int gcd = 1;

 int k = 2;

 while(k <= n1 && k <= n2)

 {

 if(n1 % k == 0 && n2 % k == 0)

gcd = k;

 k++;

 }

 return gcd;

}

public static boolean isPrime(int n)

{

 for(divisor = 2; divisor <= n/2;

divisor++)

 {

 if(n % divisor == 0) return false;

 }

 return true;

}

14. Overloading Methods

public static int max(int n1, int n2)

{

 int result;

 if(n1 > n2) result = n1;

 else result = n2;

 return result;

}

public static double max(double n1, double n2)

{

 double result;

 if(n1 > n2) result = n1;

 else result = n2;

 return result;

}

public static long max(long n1, long n2)

{

 long result;

 if(n1 > n2) result = n1;

 else result = n2;

 return result;

}

public static float max(float n1, float n2)

{

 float result;

 if(n1 > n2) result = n1;

 else result = n2;

 return result;

}

public static char max(charn1, char n2)

{

 char result;

 if(n1 > n2) result = n1;

 else result = n2;

 return result;

}

public static double max(double n1, double n2, double n3)

{

 return max(max(n1, n2), n3);

}

double x = max(3, 3.5); invokes double max(double, double)

double x = max(3, 5); invokes int max(int, int)

15. Ambiguous Overloads – compiler cannot determine which of two or more

possible matches should be used for an invocation of a method.

 For example, given

public static double max(int n1, double n2)

{

 double result;

 if(n1 > n2) result = n1;

 else result = n2;

 return result;

}

public static double max(double n1, int n2)

{

 double result;

 if(n1 > n2) result = n1;

 else result = n2;

 return result;

}

 Overloaded methods must be defined in such a manner that such

ambiguities cannot occur! Ambiguous overloads result in compiler errors!

16. Scope of Variables

 The scope of a particular variable is the part of the program where the

variable can be referenced.

 A variable defined inside of a method is referred to as a LOCAL variable.

 In the method below, n is a local variable with a scope limited by the

enclosing block; n cannot be referenced outside of the block!

public static void increment(int n)

 {

 n++;

 System.out.println(n);

 }

public static void increment(int n)

 {

 n++;

 System.out.println(n);

 int j = 1;

 n++;

 System.out.println(n + j++);

}

public static void increment(int n, int s)

 {

 n++;

 System.out.println(n);

 {

 int n = 15;

 if s > n System.exit(0);

 }

 int j = 1;

 n++;

 System.out.println(n + j++);

}

Scope of the variable n

Scope of the

parameter n

Scope of the
variable j

Scope of the parameter n

Scope of the
variable j

scope of

variable n

parameter n is not
available in this block

17. Math Class http://java.sun.com/javase/6/docs/api/index.html

 does not contain a main method

 serves as a container class, i.e., holds a selection of methods

a. Math.PI  3.14159

b. Math.E  2.71828

c. Math.random() double 0.0 ≤ r < 1.0

d. Trigonometric Methods

 sin, cos, tan, etc,

e. Exponent Methods

i. double exp(double x)  ex

ii. double log(double x)  loge(x)

iii. double log10(double x)  log10(x)

iv. double pow(double a, b)  ab

v. double sqrt(double x)  x1/2

f. Rounding Methods

i. double ceil(double x)  round up to nearest integer

ii. double floor(double x)  round down to nearest integer

iii. double rint(double x)  round to nearest integer;

 if equally close to both integers, the even integer is returned

iv. int round(float x)  (int)Math.floor(x + 0.5)

v. long round (double x)  (long)Math.floor(x + 0.5)

g. Minimum, Maximum, Absolute

 methods are overloaded for int, long, float, & double

i. min(a, b)

ii. max(a, b)

iii. abs(a)

http://java.sun.com/javase/6/docs/api/index.html

18. Random Characters

a. Unicode  0 ≤ u ≤ 65535

Math.random()  0.0 ≤ r < 1.0  [0.0, 1.0)

 thus

0 ≤ (int)(Math.random() * (65535 + 1)) < 65536

 hence

Unicode characters can be generated by (int)(Math.random() * (65535 + 1))

b. Random Letters

 random integer between (int)‟a‟ & (int)‟z‟

(int)((int)‟a‟ = Math.random() * ((int) „z‟ – (int)‟a‟ + 1)

 or

„a‟ + Math.random() * („z‟ – „a‟ + 1)

 random lowercase letter

(char)(„a‟ + Math.random() * („z‟ – „a‟ + 1))

 random uppercase letter

(char)(„A‟ + Math.random() * („Z‟ – „A‟ + 1))

 random character between ch1 & ch2 with ch1 < ch2

(char)(ch1 + Math.random() * (ch2 – ch1 + 1))

c. Listing 5.8 & Listing 5.9 pages 158-159

19. Method Abstraction & Stepwise Refinement

 divide problem into smaller sub-problems

 stepwise refinement

 divide & conquer

a. Top-Down Design

b. Top-Down Implementation

 stubs, e.g., printMonthBody{ }

c. Bottom-Up Implementation

i. Implement isLeapYear() method and

create a test program for the isLeapYear() method

ii. Implement getNumberOfDaysInMonth() method and create a

test program for the getNumberOfDaysInMonth() method

iii. Etc.

Input Beginning Year printMonth

printMonthTitle printMonthBody

Generate Perpetual
Calendar

getMonthName getStartDay

isLeapYear

getTotalNumberOfDays

getNumberOfDaysInMonth

20. Planning versus Experimental Development

a. It is only viable to plan a project when you know what to expect in

the nature of major aspects of the development

b. When you are unsure of your knowledge, engage in experimental

development

c. After you have made one, you are more qualified to use Top-Design

to plan the project

d. Given a design problem that you don‟t know how to solve, resort to

a concrete example. If you can solve a concrete example, you are

better prepared to solve the more general, i.e., abstract, design

problem. Go from the concrete to the abstract; if you try to start

with the general, you may never finish.

e. Start your problem solution at a desk, not at the computer terminal.

f. For some types of problems, you might try to start your experimental

development by using Data Tables to give a concrete problem to solve.

g. Data Tables combined with a detailed Analysis will often lead to the

correct Algorithms to solve the general design problem.

h. Before you announce a public solution, however, you must do a test

implementation of the algorithms. Make sure to test the algorithms

with a sufficiently large Data Set so as to ensure that the algorithms

are, indeed, correct.

Pottery Rule

Make one, throw it away!

Make another to keep.

