Lecture Notes
Chapter #3
Selections

1. Flow Charts

2. Boolean Data Types & Operations

relational (comparison) operators
< <= > >= == !=

boolean values
TRUE, FALSE

boolean variable
boolean doorOpen = FALSE;

boolean (logical) operators
! && || ^
not and inclusive exclusive
or or

```java
int number = input.nextInt();
System.out.println("Is " + number + " divisible by 2 and 3? " + (number %2 == 0 && number %3 == 0) + " divisible by 2 or 3? " + (number %2 == 0 || number %3 == 0) + " divisible by 2 or 3, but not both? " + (number %2 == 0 ^ number %3 == 0)

mathematics $\leftrightarrow A < B < C$
Java $\leftrightarrow ((A < B) && (B < C))$

boolean values cannot be cast to other types
values of other types cannot be cast to a boolean type

DeMorgan’s Law
! (a && b) $\leftrightarrow$ !a || !b
! (a || b) $\leftrightarrow$ !a && !b
```
3. Evaluation of Boolean Expressions
 - \((a \&\& b)\) e.g., \(((x == y) \&\& (u < v))\)
 - evaluate \(a\), if \(a\) is \TRUE, evaluate \(b\). if \(b\) is \FALSE then done
 - conditional (short-circuit) AND operator
 - \((a || b)\) e.g., \(((x == y) || (u < v))\)
 - evaluate \(a\), if \(a\) is \FALSE, evaluate \(b\). if \(a\) is \TRUE then done
 - conditional (short-circuit) OR operator

4. Leap Year Algorithm
\[
(((\text{year} \mod 4 == 0) \&\& (\text{year} \mod 100 != 0)) \| (\text{year} \mod 400 ==0))
\]

   ```
   boolean isLeapYear;
   isLeapYear = (((\text{year} \mod 4 == 0) \&\& (\text{year} \mod 100 != 0)) \| (\text{year} \mod 400 ==0));
   ```

5. Simple Math Program

   ```java
   int answer;
   int num1 = (int)(System.currentTimeMillis( ) \% 10);
   int num1 = (int)(System.currentTimeMillis( ) * 7 \% 10);
   System.out.println( num1 + " + " + num2 + " == " );
   answer = input.nextInt( );
   System.out.println( num1 + " + " + num2 + " == " + answer + " is " + (num1 + num2 == answer) );
   ```

6. Selections
 a. \textbf{if (boolean expression) \{action \}}

   ```java
   if ( a > b )
   {
       System.out.println(" a > b ");
   }
   ```

   ```
   "if then" statement
   ```
b. if (boolean expression) { action1 } else { action2 }

if (a > b)
{
 System.out.println(" a is greater than b ");
}
else
{
 System.out.println(" b is greater than or equal to a ");
}

if (boolean expression) {
 action1
} else {
 action2
}

 البرمجة والرياضيات

if (a > b)
{
 System.out.println("a is greater than b");
}
else
{
 System.out.println("b is greater than or equal to a");
}

c. Nested If Statements

if (boolean expression1)
{
 if (boolean expression2)
 {
 action1
 }
 else
 {
 action2
 }
}
else
{
 action3
}

if (score >= 90.0)
 grade = 'A';
else if (score >= 80.0)
 grade = 'B';
else if (score >= 70.0)
 grade = 'C';
else if (score >= 60.0)
 grade = 'D';
else
 grade = 'F';

if (boolean expression1)
{
 if (boolean expression2)
 {
 action1
 }
 else
 {
 action2
 }
}
else
{
 if (boolean expression3)
 {
 action3
 }
 else
 {
 action4
 }
}

An else clause matches the most recent unmatched if clause in the same block

boolean even = number % 2 == 0;
if (even)
 System.out.println("Even");
7. Generation of Random Numbers
 - `int num1 = (int)(System.currentTimeMillis() % 10);`
 - `int num2 = (int)(Math.random() * 10);`

 `double d;`
 `d = Math.random();`
 Math.random returns a double value such that
 \[0.0 \leq d < 1.0\]
 `int num2 = (int)(Math.random() * 10);`
 returns an integer number \(0 \leq \text{num2} \leq 9\)

8. Lottery
 `int lottery = (int)(Math.random() * 100);` // two digit lottery number
 `int guess = input.nextInt();`

 `if (guess == lottery)`
 `System.out.println("Exact match you win $10,000");`
 `else if (guess % 10 == lottery / 10 && guess / 10 == lottery % 10)`
 `System.out.println("Match all digits you win $3,000");`
 `else if (guess % 10 == lottery / 10 || guess % 10 == lottery % 10 ||`
 `guess / 10 == lottery / 10 || guess / 10 == lottery % 10)`
 `System.out.println("Match one digit you win $1,000");`
 `else`
 `System.out.println("You lose!");`

9. Page 81-82 §3.3.7 Computing 2002 US Federal Personal Tax Rates
 Specification and partial code – subject to homework assignment

 `System.exit(0);` // graceful exit from program under error conditions

 `double tax = 0;`
 // avoid potential syntax error if no value is assigned prior to use

10. Testing programs
 Provide test cases that cover all potential cases; make sure that you
 cover all normal operating conditions but also consider any unusual or
 abnormal cases in the test data set
11. **Incremental Development & Testing**

Write the code in small sections and test it before adding more code.

Do not expect to be able to efficiently debug large sections of code!

12. **Switch Statements**

switch (expression)
{
 case value1: { statement1.1, ..., statement1.m; break;}
 case value2: { statement2.1, ..., statement2.n; break;}
 case value3: { statement3.1, ..., statement3.p; break;}
 case value4: { statement4.1, ..., statement4.q; break;}
 ...
 case valuek: { statementk.1, ..., statementk.r; break;}
 default: ... ; { default statements; break;}
}

- expression value types, e.g., value2, etc.
 - char, byte, short, int

- expressions must evaluate to constants, i.e., value2 cannot contain variables
- if a break statement is omitted, computation will continue into the next case statement

13. **Conditional Expressions**

```java
if (x > 0)
  y = 1;
else
  y = -1;

y = (x > 0) ? 1 : -1;

y = (booleanExpression) ? expressionIfTrue : expressionIfFalse;
```

given y = 10 and n = 5

```java
y = (a > b || c > b) ? (k * k + n) : (k + k - n);
```

evaluates to

```java
y == 105 if (a > b || c > b) evaluates to TRUE
or
y == 15 if (a > b || c > b) evaluates to FALSE
```
14. Formatting Console Output pg 89-90

System.out.printf(format, item1, item2, ..., itemk);

format specifiers
%b boolean
%c character
%d integer – base 10 decimal integer
%f floating point – base 10 real number
%e scientific notation – base 10 real number
%s string

Given
int count = 5;
double amount = 45.56;
then
System.out.printf("count is %d and the amount is %f", count, amount);

produces the following output
count is 5 and the amount is 45.560000

Specifying Width and Precision

%5c c='A' ➔ ___ _ A
%6b b=TRUE ➔ ___ TRUE
b=FALSE ➔ ___ FALSE
%5d d=15 ➔ _ _ _ 15
d=12345678 ➔ 12345678
%10.2f f=123.45678 ➔ _ _ _ _ _ 123.45
f=12345678.12345678 ➔ 12345678.12
%10.2e e=12345678.12345678 ➔ 1.234567812e+8
%12s s="Welcome" ➔ _ _ _ _ _ _ Welcome
s="Welcome to Comp 110" ➔ Welcome to Comp 110

15. Operator Precedence and Associativity pg 91

var++, var-- i.e., postfix
+, - (unary plus, unary minus), ++var, -var i.e., prefix
(type) i.e., casting
!(...) i.e., not
*, /, % i.e., multiply, divide, remainder
+, - i.e., addition, subtraction
<, <=, >, >= i.e., comparison operators
==, != i.e., equality tests
^ i.e., exclusive OR, i.e., XOR
&& i.e., AND
|| i.e., OR
=, +=, -=, *=, /=, %= i.e., assignment operator

Assignment operators are RIGHT ASSOCIATIVE a = b += c = 5 ➔ a = (b += (c = 5))
Other binary operators are LEFT ASSOCIATIVE a – b + c – d ➔ ((a - b) + c) - d
7. GUI Confirmation Dialogs pg 92