
Lecture Notes

1. Comments

a. /* */
b. //

2. Program Structures

a.
public class ComputeArea
{
 public static void main(String[] args)
 {
 // input radius
 // compute area  algorithm
 // output area
 }
}

b.
public class ComputeArea
{
 public static void main(String[] args)
 {

 // declare variables

 double radius;
 double area;

 // assign value

 radius = 20;

 // compute area

 area = radius * radius * 3.14159;

 // output area

 System.out.println(“Circle radius: “ + radius + “ area: “ + area);
 }
}

3. String Concatenation
System.out.println(“Circle radius: “ + radius + “ area: “ + area);

statement radius

type

radius

value

area

type

area value

double radius; double no value

double area; double no value

radius = 20; 20

area = radius * radius * 3.14159; 1256.636

Actions to be executed
Order of execution of the actions

Data Types

char character 8-bit unsigned

byte integer 8-bit signed

short integer 16-bit signed

int integer 32-bit signed

long integer 64-bit signed

float floating point 32-bit signed

double floating point 32-bit signed

String  “Circle radius: “
String  “ area: “

String Concatenation  “Charles “ + “Putnam”

4. Output String Concatenation

“Circle radius: “ + radius + “ area: “ + area

System.out.println(“Introduction to Java Programming, “ +
By Y. Daniel Liang”);

5. Identifiers (variables, constants, methods, classes, packages)

a. sequence of Characters (Letters; Digits; Underscores, i.e., “_”; Dollar Sign, i.e., “$”)
b. cannot contain spaces
c. cannot start with a Digit
d. normally starts with a Letter
e. starts with an Underscore under specific situations
f. the $ character should only used in mechanically generated source code
g. cannot be a reserved word (see Appendix A)
h. cannot be TRUE, FALSE, NULL
i. can be of any length

Legal Identifiers
$L5, $_L5, M15, M15_a, _ks12

Illegal identifiers
 35M, M24+6, LM 5 (no spaces allowed)

6. Java is case sensitive, i.e., Mag, mag, MAG, mAg, maG, etc. are all different identifiers

7. Identifiers are used for naming variables, constants, methods, classes, and packages

8. Variable Declaration

 provides the allocation of memory space appropriate for the data type requested

 by convention, single-word variable names are lower case

 if a variable name consist of more than one word,
o the words are concatenated
o the first word is lower case
o all subsequent words are capitalized

e.g., double interestRate;
 double dailyCompoundInterest;

 int x, y, z;

9. Assignment Statements
int x = 1; x  1 x

 hence

double radius = 2.5; radius  2.5; radius

writing an output string on multiple lines

Strings

Variables

1

2.5

The value assigned must be compatible with the data type of the variable int x = 1.0; is invalid

10. Assignment Expressions

x = 5 * (3/2) + 3 * 2;

area = radius * radius * 3.14159;

x = x + 1;

 Remark: x  2  1 + 1  x + 1

 x x

For Java, C, & C++

Assignment Statements are treated as an Expression that evaluates to
the value being assigned on the left-hand side of the assignment variable, e.g.,

 x = 1;

 System.out.println(x = 1);  &
System.out.println(x);

 k = 1;

 i = j = k = 1;  j = k;
i = j;

11. Initializing Variables

A variable must be declared before it Is given a value.
A variable declared in a method, must be assigned a value before it can be used.

int i, j, k = 2, m = k + 3; n = 5 * m;

12. Constants

 permanent data – never changes

 constants must be declared and initialized in one statement

 by convention, constant names are always UPPERCASE

final double PI = 3.14159;
area = radius * radius * PI;

 PI = PI + 1;  error message invalid operation

 descriptive name for a constant

 value isolated to one location

13. Number Systems

a. Octal Numbers
b. Binary Numbers
c. Hexadecimal Numbers
d. 2‟s Complement Arithmetic

1 2

In mathematics, the “=” symbol denotes equality,
hence x = x + 1 implies that 1 = 0 which leads to a
contradiction in any number system with a base > 1.

In most programming languages, the “=” symbol
denotes replacement as indicated to the left of this

box.

14. Numeric Data Types

15. Overflow/Underflow

 Overflow – value too large for variable data type

 Underflow -- value too small for variable data type

Real Numbers

 (] [)
-- 0 +

Integer Numbers

 []
-- 0 +

 Floating-point numbers are not stored with complete accuracy, results of calculations

are approximate!

 Integer numbers are stored with complete accuracy, calculations with integers yield

exact results!

 Java reports neither warnings nor errors on overflows/underflows!

Data Types

char character 8-bit unsigned

byte integer 8-bit signed [-27, 27 - 1] [-128, 127]

short integer 16-bit signed [-215, 215 - 1] [-32768, 32767]

int integer 32-bit signed [-231, 231 - 1] [-2,147,483,648, 2,147,483647]

long integer 64-bit signed [-263, 263 - 1]

float floating point 32-bit signed single precision

negative range [-3.4028235 * 1038, -1.4 * 10-45]

positive range [1.4 * 10-45, 3.4028235 * 1038]

double floating point 32-bit signed double precision

negative range [-1.7976931348623157 * 10308, -4.9 * 10-324]

positive range [4.9 * 10-324, 1.7976931348623157 * 10308]

In Range

Overflow

Underflow

In Range In Range

16. Numeric Operators

 Addition + binary operator  two operators

unary operator  one operator

 Subtraction - binary operator  two operators

unary operator  one operator

 Multiplication *

 Division /

 Remainder %

17. Integer Division
 int z, r, x = 11, y = 3;
 z = x/y;  z

 r = x%y;  r

18. Computing Time

int seconds = 500;
int minutes = seconds/60;  minutes

seconds = seconds%60;  seconds

19. Numeric Literals

constant values that are used in statements

int seconds = 500;

int minutes = seconds/60;

a. Integer Literals

 an integer literal can be assigned to an integer variable as long as it fits the data type

 integer literal with a value between [-231, 231 - 1] is assumed to be of type int

 to denote an integer literal of type long, append the letter “L” on the end of the
number, i.e., long n = 2147483648L;

 an integer literal without a leading zero is assumed to be of base 10, i.e., a decimal
number, e.g., int i = 37; (decimal)

 an integer literal with a leading zero is assumed to be of base 8, i.e., an octal number,
e.g., int j = 037; (octal)

 an integer literal with a leading 0x is assumed to be of base 16, i.e., a hexadecimal
number, e.g., int k = 0x37; (hexadecimal)

3

2

8

20

literals

b. Floating-Point Literals

 decimal point required when writing a floating-point literal

 a floating-point literal with an “f” or “F” suffix is of type float

float x = 3.14159f; float x = 3.14159F;

 a floating-point literal with a “d” or “D” suffix is of type double

double x = 3.14159d; double x = 3.14159D;

 a floating-point literal without a suffix is assumed to be of type double

c. Scientific Notation

 1.23456e+2  1.23456e2  1.23456 * 10
2
  123.456

 1.23456e-2  1.23456 * 10
-2

  0.0123456

20. Evaluating Expressions

a. Evaluate operators contained inside parentheses
b. Nested parenthesis

i. evaluate operators contained inside innermost parentheses
j. evaluate operators contained inside outer parenthesis

c. Evaluate multiplication, division & remainder operators (evaluate operators left to right)
d. Evaluate addition & subtraction operators (evaluate operators left to right)

21. Fahrenheit  Celsius Conversion

double fahrenheit = 100;
double celsius = (5.0/9) * (fahrenheit – 1);

 5/9  0
 5.0/9  0.5555555…

5.0 / 9  5.0 / 9.0  double / double  double

double

integer

22. Shorthand Operators

int x = 17, a = 3, n = 7, m;

 += x += a; x = x + a; a = 3; x = 17; x += a; x

 -= x -= a; x = x – a; a = 3; x = 17; x -= a; x

 *= x *= a; x = x * a; a = 3; x = 17; x *= a; x

 /= x /= a; x = x / a; a = 3; x = 17; x /= a; x

 %= x %= a; x = x % a; a = 3; x = 17; x %= a; x

 n++; n m = n++; m n post-increment operator
 assignment

 increment

 n-- ; n m = n--; m n post-decrement operator
assignment
 decrement

 ++n; n m = ++n; m n pre-increment operator
Increment 
assignment

 -- n; n m = --n; m n pre-decrement operator
decrement 
assignment

Valid Use:

a. For
int x = 17, a = 3, n = 7, m;

 m = ++x - --a + n--;

 yields m

b. System.out.println(x %= 4);

prints “1”

Invalid Use:

For
int x = 17, m;

 m = ++x + x--;

 yields either 36 or 37 since the value of m is indeterminate, i.e.,

it is not specified in the Java language specifications!

Remark: The shorthand operators can be used with both integer and floating point variables

with the proviso that the % operator is not defined for floating point variables.

20

14

51

5

2

8

6

8 9

6 5

5 5

9 9

6

8

23

23. Numeric Conversions (in computations)

a. Example

byte i = 9;
long k = (i + 5)/2;
double d = (i – 3) + k*4;

b. Rules of Numeric Conversion

 if one of the operands is a double
then convert the other operands to doubles

 otherwise, if one of the operands is a float
then convert the other operands to floats

 otherwise, if one of the operands is a long
then convert the other operands to longs

 otherwise convert all operands to ints

c. Range of Numeric Increases

byte short int long float double

Type Casting is an operation that converts a value of a specific data type into a value of another
data type, e.g., for int n = 3; float m; the assignment m = (float) n; is permissible!

o (float) n converts the value of n into a floating point number;
o m = (float) n; assigns the floating point number (float) n to the variable m.

o casting does not change the data type of the variable but only the data type of the value

 It is always possible to assign a value to a numeric variable whose type supports a larger range
of values, e.g., for short n = 3; long m; the assignment m = n; is permissible! Explicit type
casting is not required; type casting is implicit!

 To assign a value to a numeric variable whose type supports a smaller range of values is
permissible only if casting is used, e.g.,
o for short n; long m = 3; the assignment n = m; is not permissible!

o for short n; long m = 3; the assignment n = (short)m; is permissible but lost information may

lead to inaccurate results!

o for long n; float m = 3.7; the assignment n = (long) n; is permissible but the floating point
number 3.7 is truncated to the long integer 3, i.e., information is lost!

 Type Widening
o casting a variable of a type with a small range to a variable of a type with a larger range
o performed automatically without explicit casting

 Type Narrowing
o casting a variable of a type with a larger range to a variable of a type with a smaller range
o must be explicitly performed

 Use of Casting in Computations
double purchaseAMOUNT = 197.55;

 double tax = purchaseAMOUNT * 0.06;

 System.out.println(“Sales tax: “ + (int)(tax * 100) / 100.0);
 

Sales Tax: 11.85

24. Character Data Type & Operations

a. character data type variable holds only a single character, e.g.,

char ch = „z‟;

b. a character literal is a single character enclosed in single quotation marks, i.e.,
 apostrophes, e.g., „z‟

„z‟ requires one storage location

c. a string literal is one or more characters enclosed in quotation marks, e.g.,
“Putnam” and “A” are both strings

“Putnam” requires seven (7) storage locations
“A” requires two (2) storage locations

d. ASCII Code

8-bit  256 characters

e. Unicode Code
16-bit code  65,536 characters

 ASCII subset \u0000 … \u007F
 „A‟  \u0041  4116  6510

 See ASCII Table Appendix B Liang

Supplementary code  1,112,064 characters

Remark: char ch = „A‟; ch++;  ch

f. Escape Sequences (Special Characters)

 \b backspace \u0008

 \t tab \u0009

 \n linefeed \u000A

 \f formfeed \u000C

 \r cr (return) \u000D

 \\ backslash \u005C

 \‟ single quote \u0027

 \” double quote \u0022

System.out.println(“\tHello World\rGlobal Warming is fun\b\b\b=== serious”);
 
 <tab>Hello World

 Global Warming is fun serious”);

B

g. Character Data Conversion

char ch = (char)0xAB0041;  lower 16 bits is assigned to ch  ch

char ch = (char) 65.25;  65.25 is converted to an integer 6510 which is assigned to ch

int i = „2‟ + „3‟;  i = { (int) ‟2‟  5010 & (int) ‟3‟ 5110 } hence i contains

int j = 2 + „a‟;  (int)‟a‟  9710 & (char) j  „c‟

int d = „a‟ – „A‟;  d

conversion of lowercase ch to uppercase ch1

char ch1 = (char)(„A‟ + (ch – „a‟));

conversion of uppercase ch to lowercase ch1
char ch1 = (char)(„a‟ + (ch – „A‟));

25. String Type

String msg = “Hello World”;  msg

 String is a predefined class in the Java library

 String is not a primitive type; it is a reference type

 Byte, short, int, long, float, double, & char are primitive types

String first, last, complete, filename;

first = “Charles”; last = “Putnam”; complete = first + “ “ + last;  complete

fileName = “Grades” + 2010;  fileName

for int i = 1, j = 2;

System.out.println(“i + j is “ + i + j);  i + j is 12

first concatenation “i + j is “ + i  “i + j is 1”
second concatenation “i + j is 1” + j  “i + j is 12”

System.out.println(“i + j is “ + (i + j));  i + j is 3

41
16

  65
10

  ‘A’

50
10

 + 51
10

  101
10

32
10

Hello World

Charles Putnam

Grades2010

26. Scanner Class (Input Operations)

a. System.out refers to the Standard Output Device  console (default)

println method displays primitive values &/or strings to the console

b. System.in refers to the Standard Input Device  keyboard (default)

input is not directly supported by java, i.e., there does not exist a
“readln” method that allows direct input such as println supports output

Input requires the use of the Scanner class to build an object to read input

from System.in, i.e., the Standard Input Device, e.g.,

Scanner input = new Scanner(System.in);

c. Methods contained in Scanner Objects

 nextByte() reads an integer of the byte type

 nextShort() reads an integer of the short type

 nextInt() reads an integer of the int type

 nextLong() reads an integer of the long type

 nextFloat() reads an integer of the float type

 nextDouble() reads an integer of the double type

 next() reads a string that ends before a WHITESPACE character

e.g., ‘ ‘, ‘\t’, ‘\f’, ‘\r’, ‘\n’

 nextline() reads a line of characters, i.e.,
a string ending with a LINE SEPARATOR

d. Input Statement

System.out.print(“Enter double value: “); prompt for input statement

Scanner input = new Scanner(System.in); create Scanner object

double d = input.nextDouble();

int i = input.nextInt();

long L = input.nextLong();

short s = input.nextShort();

byte b = input.nextByte();

float f = input.nextFloat();

String s = input.next();

String s1 = input.nextLine();

creates an object of the Scanner class

assigns the object reference to the variable input

creates a variable of the Scanner type

use the nextDouble() method of the Scanner object

input to read a value into the double variable d

e. Print Statements

 println(…);  prints the information & moves the cursor to the next line

 print(…);  prints the information & keeps the cursor on the same line

27. Case Studies – read Liang pages 46-51 (important to ask questions)

28. Programming Style & Documentation
a. Comments

i. Single line comments // … use within methods

ii. Block comments /* … */ use for header information, i.e., name, etc.

iii. javadoc comments /** … */ can be extracted into a HTML file
see www.java.sun.com/j2se/javadoc
extraction will not be used in Comp 110

use for comments on entire class or method;

must be placed before class or method

b. Naming Conventions

 choose descriptive names with meanings related to the intended purpose

 in general, do not choose abbreviations, use complete words

 names are case sensitive

 names for variables & methods
o single word names should be lower case
o multiple word names

 first word should be lower case
 capitalize the first letter of each subsequent word

 concatenate the words, e.g., accountDue

 do not leave blank spaces in a name, e.g., account Due is not a proper name

 the underline character may be used to separate words within a name,

e.g., account_Due

 names for classes
o Capitalize the first word of each word in a class name
o Do not choose class names that are in the Java Library

Hint: If the program encounters problems when compiling, one area to
consider is that you have chosen a name that is in the Java Library

 names for constants
o Capitalize all letters in each word constant name
o Use the underline character to separate each word of the name,

e.g., PI, MIN_MAX, etc.

c. Spacing

 i = j + k / 2; proper style

 i=j+k/2; improper style – difficult to read

http://www.java.sun.com/j2se/javadoc

d. Indentation

Proper Indentation for Comp 110 (next line block style)

public class ComputeArea
{
 public static void main(String[] args)
 {

 // declare variables

 double radius;
 double area;

 // assign value

 radius = 20;

 // compute area

 area = radius * radius * 3.14159;

 // output area

 System.out.println(“Circle radius: “ + radius + “ area: “ + area);
 }
}

Improper Indentation for Comp 110 (end of line block style) (used by Liang)

public class ComputeArea {

 public static void main(String[] args) {

 // declare variables

 double radius;
 double area;

 // assign value

 radius = 20;

 // compute area

 area = radius * radius * 3.14159;

 // output area

 System.out.println(“Circle radius: “ + radius + “ area: “ + area);
 }
}

Easy to find alignment errors, i.e.,

easy to determine unbalanced

brackets, e.g., follow vertical lines

Difficult to find alignment errors, i.e.,

unbalanced brackets are not easy to spot.

2 – 3 spaces indentation; more than 4 spaces may make the program difficult to

read; for a large program, such large indentations may make it difficult to see the

entire program on a monitor or to print a readable hard copy!

29. Programming Errors

a. Syntax Errors

 detected during compilation
 errors in code construction

o mistyping keywords
o omitting punctuation
o mismatched braces – missing “{“ or “}”

 compilation error messages
o line number
o “^” indicator, e.g., Systm.out.println(“Age: “ + i);

^
 removing errors

o start at top of the document
o remove first error
o working down through the document, remove all understandable errors
o recompile
o repeat as required

b. Runtime Errors
 detected by abnormal termination of the program runtime
 environment detects an operation that is impossible to carry out
 typically caused by input or computational errors

o input a floating point number into a variable designed for the long data type
o divide a number by zero

 runtime termination error messages

c. Logic Errors (bugs)
 program contains neither syntax nor runtime errors
 program does not perform as it was intended

o does not produce the correct output
o does not terminate correctly
o etc.

30. Debugging

a. Trace program -- check variable values during runtime

 Hand-trace
 Insert print statements
 Debugging software – JDK command line debugger – jdb

> jdb Hello.java
o Execute a single statement at a time
o Step over a method
o Execute each statement in a method (trace a method)

o Set breakpoints for specific statements – program stop at each breakpoint

o Display the content of selected variables
o Modify the content of selected variables

o Display call stacks –

 trace method calls

 view lists of all pending calls

b. Surgery

 Selectively comment sections of code
 Recompile & execute new program, looking for areas which produce the errors

c. Review the Design
 Check areas of the design documents that could produce the errors
 Be sure to leave your ego behind

d. Combined Approach

 Use all of the above techniques discussed above

31. Graphical user Interface (GUI)

 Liang pages 55 – 57
 Liang Powerpoint Slides

