
Lecture Notes

Chapter #10

Inheritance & Polymorphism

 Inheritance – results from deriving new classes from existing classes

 Root Class – all java classes are derived from the java.lang.Object class

` Superclass
 Parent Class
 Base Class

 Subclass
 Subclasses Child Class
 derived from Derived Class
 extended from Extended Class
 Superclass

 A child class inherits all accessible data fields and methods from its parent class!

 A child class does not inherit the constructors of the parent class!

 The child class may also add uniquely new data fields and methods!

GeometricObject

-color: String
-fllled: boolean
-dateCreated: java.util.Date

+GeometricObject()
+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

GeometricObject1

-color: String (object)
-fllled: boolean (color)
-dateCreated: java.util.Date

+GeometricObject()
+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

Rectangle1

-width: double
-height: double

+Rectangle()
+Rectangle(width: double, height: double)
+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void
+getArea(): double

+getPerimeter(): double

Circle4

-radius: double

+Circle()
+Circle(radius: double)
+getRadius(): double
+setRadius(radius: double): void
+getArea(): double
+getParimeter(): double
+getDiameter(): double
+printCircle(): void

1. Implementation

a. GeometricObject1.java

public class GeometricObject1
{
 private String color = “white”;
 private boolean filled;
 private java.util.Date dateCreated;

 public GeometricObject1() { dateCreated = new java.util.Date(); }

 public String getColor() { return color; }

 public void setColor(String color) { this.color = color;}

 public boolean isFilled() { return filled; }

 public void setFilled(boolean filled) { this.filled = filled; }

 public java.util.Date getDateCreated() { return dateCreated; }

 public String toString() { return “created on “ + dateCreated

+ “\ncolor: “ + color + “ and filled: “ + filled; }
}

b. Circle4.java

public class Circle4 extends GeometricObject1
{
 private double radius;

 public Circle4() { }
 public Circle4(double radius) { this.radius = radius; }

 public double getRadius() { return radius; }
 public void setRadius(double radius) { this.radius = radius; }

 public double getArea() { return radius * radius * Math.PI; }
 public double getDiameter() { return 2 * radius; }
 public double getPerimeter() { return 2 * radius * Math.PI; }

 public void printCircle()
 {
 System.out.println(“The circle is created “ + getDateCreated() +
 “ and the radius is “ + radius);
 }
}

c. Rectangle1.java

public class Retangle1 extends GeometricObject1
{

 private double width;
 private double height;

public Rectangle1() { }
public Rectangle1(double width, double height)
{
 this width = width;
 this height = height;
}

public double getWidth() { return width; }
public void setWidth(double width) { this width = width; }

 public double getHeight() { return height; }

public void setHeigth(double height) { this height = height; }

public double getArea() { return width * height: }
public double getPerimeter() { return 2 * (width + height); }

 }

d. TestCircleRectangle.java

public class TestCircleRetangle
{
 public static void main(String[] args)
 {
 Circle4 circle = new Circle4(1);
 System.out.println(circle.toString());
 System.out.println(circle.getRadius());
 System.out.println(circle.getArea());
 System.out.println(circle.getDiameter());

 Rectangle1 rectangle = new Rectangle1(2,4);
 System.out.println(rectangle.toString());
 System.out.println(rectangle.getArea());
 System.out.println(rectangle.getPerimeter());
 }
}

See Liang page 334 for output

of TestCircleRectangle.java

Remark: A subclass is NOT a subset of its superclass; in fact, since the subclass
has access to more items than the superclass, an instance of the
superclass can be thought of as a subset of an instance of the
subclass!

Remark: Inheritance is used to model is-a relationships; e.g., an apple is a fruit!

For a class B to extend a class A, class B should contain more detailed
information than class A.

A subclass and a superclass must have an is-a relationship

Remark: C++ allows inheritance from multiple classes; i.e., it supports multiple
inheritance.

Remark: Java does not allow inheritance from multiple classes; a Java class may
inherit directly only from one superclass, i.e., the restriction is known as

single inheritance. If the extends keyword is used to define a subclass,

it allows only one parent class. Multiple inheritance in java is achieved

by the use of interfaces.

2. Constructor Chaining

 A child class inherits all accessible data fields and methods from its parent
class, BUT the child class does not inherit the constructors of the parent
class!

 “this” keyword – refers to the calling object – self-referential

 “super” keyword – refers to the parent of the calling object – used to

o call a superclass constructor
 super() invokes the no-arg constructor of its superclass

 super(argument list) invokes the superclass constructor that
matches the argument list

 the call for a superclass constructor must be the first statement in
the subclass constructor

 invoking a superclass constructor name in a subclass causes a
syntax error

 if a subclass does not explicitly invoke its superclass constructor,
the compiler places the “super()” statement as the first line in the
subclass constructor, i.e.,

public A(){ } public A(){ super(); }

public class Faculty extends Employee
{
 public static void main(String[] args)
 {
 new Faculty();
 }

 public Faculty()
 {
 System.out.println(“(4) Faculty no-arg constructor invoked”);
 }
}

class Employee extends Person

 {
 public Employee()
 {
 this(“(2) Employee’s overloaded constructor invoked”);

 System.out.println(“(3) Employee’s no-arg constructor invoked”);
 }

 public Employee(String s)
 {

 System.out.println(s);
 }
 }

class Person
{
 public Person()
 {
 System.out.println(“(1) Person’s no-arg constructor invoked”);
 }
}

Construction of the

Faculty Object

The Parent Constructor is

always invoked before

the Child Constructor

The object is built like a

layer cake from the

bottom-up

Employee Constructor (3)

Faculty Constructor (4)

Person Constructor (1)

Employee Constructor (2)

Key

Constructor Calls

Constructor Returns

keyword

public class Apple extends Fruit
{

}

class Fruit
{
 public Fruit(String name)
 {
 System.out.println(Fruit constructor is invoked”);
 }
}

Since the Apple class does not

have any constructors, a no-

arg constructor is implicitly

declared.

The Apple no-arg constructor
automatically invokes the Fruit
no-arg constructor; but Fruit
does not have a no-arg
constructor. But since Fruit
has an explicitly declared
constructor with a parameter,
i.e.,

public Fruit(String name),

then the complier cannot
implicitly invoke a no-arg
constructor.

Hence, an Apple object cannot
be created and the program
cannot be compiled!

public Apple(){ }

Best Practices

PROVIDE EVERY CLASS WITH A NO-ARG CONSTRUCTOR

SUCH A POLICY AIDS THE EXTENSION OF THE CLASS, I.E.,

IT AVOIDS THE ERROR DELINEATED ABOVE

3. Overriding Methods

 “super” keyword is also used to call a superclass method

 subclasses inherit methods from their superclasses

 a subclass may modify the definition of an inherited method for use in that
subclass – method overriding

public class GeometricObject1

{
 private String color = “white”;
 private boolean filled;
 private java.util.Date dateCreated;
 public GeometricObject1() { dateCreated = new java.util.Date(); }
 public String getColor() { return color; }
 public void setColor(String color) { this.color = color;}
 public boolean isFilled() { return filled; }
 public void setFilled(boolean filled) { this.filled = filled; }
 public java.util.Date getDateCreated() { return dateCreated; }

 public String toString()
 {
 return “created on “ + dateCreated

+ “\ncolor: “ + color + “ and filled: “ + filled;
 }
 }

public class Circle4 extends GeometricObject1
{
 private double radius;
 public Circle4() { }
 public Circle4(double radius) { this.radius = radius; }
 public double getRadius() { return radius; }
 public void setRadius(double radius) { this.radius = radius; }

 public double getArea() { return radius * radius * Math.PI; }
 public double getDiameter() { return 2 * radius; }
 public double getPerimeter() { return 2 * radius * Math.PI; }

 public void printCircle()
 {
 System.out.println(“The circle is created “ + getDateCreated() +
 “ and the radius is “ + radius);
 }

 public String toString()
 {
 return super.toString() + “\nradius is “ + radius;
 }

}

The Circle4 toString() method overrides
the GeometricObject1 toString() method ; it
invokes the GeometricObject1 toString()
method and then modifies it to specify
information specific to the circle4 object.

a. Rules for Overridding Inherited Methods

 private data fields in a superclass are not accessible outside of that class,
hence they cannot be used directly by a subclass; they can be accessed &/or
mutated by public accessor &/or mutators defined in the superclass

 an instance method can be overridden only if it is accessible; private methods
cannot be overridden

 if a method defined in a subclass is private in its superclass, the two methods
are completely unrelated

 a static method can be inherited, but a static method cannot be overridden
remember that static methods are class methods

 if a static method defined in a superclass is redefined in a subclass, the
method defined in the superclass is hidden; the hidden static method can be

invoked by using the syntax “SuperClassName.staticMethodName();”

b. Overriding versus Overloading

i. Overloading – same name, different signitures

ii. Overriding – method defined in the superclass, overridden in a subclass

using the same name, same signature, and same return type as defined in
the superclass

public class Test
{
 public static void main(String [] args)
 {
 A a = new A();
 a.p(10);
 }
}

class B
{
 public void p(int i){ }
}

class A extends B
{
 public void p(int i)
 {
 System.out.println(i);
 }

}

overrides

a.p(10) invokes class A

method; hence prints 10

public class Test
{
 public static void main(String [] args)
 {
 A a = new A();
 a.p(10);
 }
}

class B
{
 public void p(int i){ }
}

class A extends B
{
 public void p(double i)
 {
 System.out.println(i);
 }

}

overloads

a.p(10) invokes class B

method; hence prints nothing

4. Object Class & Methods

 Every class in Java is descended from java.lang.Object

 If no inheritance is declared when a class is defined, the class is a subclass
of Object by default

 public String toString();
returns a string consisting of the objects name, the @ sign, and the
objects memory address in hexadecimal, e.g., student@B7F9A1

o Override the toString() method to produce relevant information

concerning the subclass objects

o System.out.println(student); System.out.println(student.toString());

 public boolean equals(Object obj) { return (this == obj); }
default implementation tests whether two reference variables point to
the same object

o Override the equals() method to test whether two distinct objects

have the same content, e.g.,

public boolean equals(Object o)
{
 if (o instanceof Circle)
 {
 return radius == ((Circle)o).radius;
 }
 else return false;
}

 Comparison Operators/Methods

o “==” operator is used to compare primitive data type values

o “==” operator is also used to compare whether two reference
variables refer to the same object (where arrays may be considered
to be objects)

o The modified “equals()” method can be used to determine whether
two objects have the same contents

o The “equals()” method can be modified to test the contents of all or
a selected subset of the data fields in the class

INSTANCEOF OPERATOR

o instanceof Circle

returns true if o is an instance of Circle

Do not use (Circle o) as the argument
when overriding the equals() method,
i.e., do not use the signature

public boolean equals(Circle o)

 see page 355 #10.12

Invoked by the statement object1.equals(object2);

5. Polymorphism, Dynamic & Genetic Programming

 a class defines a type

 a type defined by a subclass is a subtype

 a type defined by a superclass is a supertype

 a variable must be declared to be of a specific type

 the type of a variable called it’s declared type

 a variable of a reference type can hold a null value or a reference to an
object

 an object is an instance of a class

 a subclass is a specialization of its superclass

 every instance of a subclass is an instance of its superclass
o every circle is an object

 an instance of a superclass is not an instance of a subclass
o not every object is a circle

 an instance of a subclass can be passed to a parameter of its superclass,
i.e., a Circle object can be passed to a GeometricObject class prarameter

 polymorphism – an object of a subtype can be used whenever its
superclass object is required; i.e., a variable of a supertype can refer to a
subtype object

 dynamic binding – given an inheritance chain as follows,

and the object C1 o = new C1();

if the object o were to invoke a method, i.e., o.p(); then the JVM searches

for the method p() in the classes in the order C1, C2, C3, C4, java.lang.Object

once an implementation of p() is found, the search stops and that
implementation of p() is invoked

class C
2

class C
1

class C
3

class C
4

public class PolymorphismDemo
{
 public static void main(String[] args)
 {
 m(new GraduateStudent());
 m(new Student());
 m(new Person());
 m(new Object());
 }

 public static void m(Object x)
 {
 System.out.println(x.toString());
 }
}

class GraduateStudent extends Student { }
class Student extends Person { public String toString() { return “Student”; }
class Person extends Object { public String toString() { return “Person”; }

A reference variable’s declared type determines which method is matched at
compile time; i.e., the compiler uses the parameter type, the number & order of
parameters to determine the matching method.

For a method defined in several subclasses, the JVM dynamically binds the
implementation of a method at runtime decided by the actual class of the
object referenced by the variable.

Recall that polymorphism refers to the use a variable of a supertype to refer to
an object of a subtype; the implementation is known as generic programming.

The call for the execution of the method m(new GraduateStudent());

results in a the invocation of the toString() method; the JVM starts a search of the

inheritance chain starting with the GraduateStudent class for an implementation of the
toString() method.

The Student class yields such an implementation which results in the output of the
string “Student”.

The call for the execution of the method m(new Student()); results in the invocation

of its toString() method and the output of the second string “Student”.

The call for the execution of the method m(new Person()); results in the invocation of

its toString() method and the output of the string “Person”.

The call for the execution of the method m(new Object()); results in the invocation of

the java.lang.Object’s toString() method and the output of a string similar to

“java.lang.object@AD23F5”.

If a methods parameter type is a superclass, then an object of any of the
subclasses may be passed to the method via that parameter type.

6. Casting Objects & the instanceof Operator

a. Implicit Casting

Object o = new Student(); equivalent m(new Student());
m(o); statements

 An instance of Student is automatically an instance of Object

b. Explicit Casting

Student b = o; compilation error !
 An instance of Object is not necessarily an instance of Student

Student b = (Student) o;

c. Up Casting

Casting an instance of a subclass to a variable of a superclass is always
possible; implicit casting may be used.

d. Down Casting

Casting an instance of a superclass to a variable of a subclass: must
use explicit casting & object cast must be an instance of the subclass

error message ClassCastException

e. instanceof Operator

Object o = new Circle();

if(o instanceof Circle)

{

 double d = ((Circle) o).getDiameter());

}

The declared type determines which method to match at compile time;

“o.getDiameter();” would cause a compile error since Object does not contain a

“getDiameter()” method.

To enable Generic Programming, declare variables with their

supertype; thus they can accept a value of any type.

f. TestPolymorphismCasting.java

public class TestPolymorphismCasting
{
 public static void main(String [] args)
 {
 Object o1 = new Circle4(1);
 Object o2 = new Rectangle1(1, 1);
 displayObject(o1);
 displayObject(o2);
 }

public static void displayObject(Object o)
{
 if (o instanceof Circle4)
 {
 System.out.println(((Circle4) o).getArea());
 System.out.println(((Circle4) o).getDiameter());
 }
 else if (o instanceof Rectangle1)
 System.out.println(((Rectangle1) o).getArea());
 }

}

7. ArrayList Class JDK 1.2

8. Vector Class JDK 1.1

Similar to Arraylist; it is used to store objects.
Deprecated by Arraylist in JDK 1.2

Generic

Programming

Java.util.ArrayList

+ArrayList()
+add(o:Object): void
+add(index: int, o: Object): void
+clear(): void
+contains(o: Object): boolean
+get(index: int): Object
+indexOf(o: Object): int
+isEmpty(): boolean
+lastIndexOf(o: Object): int
+remove(o: Object): boolean
+remove(index: int): boolean
+size(): int
+set(index: int, o: Object): Object

See Liang page 347-348 for

 program using ArrayList

 list of differences & similarities

between ArrayList operations

and Array operations

 Arrays are fixed in size at

creation

 ArrayLists are extensible at any

time

9. Composition Construction
a. Inheritance models is-a relationships
b. Composition models has-a relationships

public class MyStack
{
 private java.util.ArrayList list = new java.util.ArrayList();

public boolean isEmpty()
{
 return list.isEmpty();
}

public int getSize()
{
 return list.size();
}

public Object peek()
{
 return list.get(getSize() – 1);
}

 public Object pop()
 {
 Object o = list.get(getSize() – 1);

 list.remove(getSize() - 1);
return o;

 }

 public Object push(Object o)
 {
 list.add(o);
 return o;
 }

 public int Search(Object o)
 {
 return list.lastIndexOf(o);
 }

 public String toString()
 {
 Return “Stack: “ + list.toString();
 }
}

MyStack

-- list: ArrayList

+ isEmpty(): boolean
+getSize(): int
+peek(): Object
+ pop(): Object
+ push(o: Object): Object
+search(o: Object): int

Returns the index of the first-matching element
in the stack by invoking the list.lastIndexOf(o)
method since the top of the stack is the last
element in the list; i.e., the end of the list is the
top of the stack.

The (String)toString method
returns a string representation of all of

the elements in the ArrayList object

10. protected Data & Methods

a. A protected data item or protected method in a public class can be

accessed by any class in the same package or by its subclasses even if the
subclasses are in different packages.

b. Visibility / Accessibility Modifiers
Private None Protected Public

 Visibility Increases

Modifiers on
members in a
class

Accessed from
the same class

Accessed from
the same
package

Accessed from
a subclass

Accessed from
a different
package

Public

Protected

None (default)

Private

Private Modifier

Hide members so that they cannot be accessed outside of the class
i.e., the members are not intended for use outside of the class
Used only for members of the class

No Modifier

Allow members of the class to be accessed directly from any class within
the same package but not from other packages
Can be used on the class as well as the members of the class

Protected Modifier

Enable members to be accessed by the subclasses in any package or
classes in the same package, i.e., members of the class are intended for
extenders of the class but not for users of the class
Used only for members of the class

Public Modifier

Enable members of the class to be accessed by any class, i.e., members of
the class are intended for users of the class
Can be used on the class as well as the members of the class

A subclass may override a method from a superclass and increase its visibility in
the subclass; but it may not restrict the methods visibility, e.g., if a method is
defined to be public in the superclass, it cannot be changed to protected, none
(default) nor private in the subclass!

Preventing Extending & Overriding

public final class C
{
 …
}

public class Test
{
 public final void m()
 {
 …
 }
}

Class C cannot be extended

Method m() cannot be extended

