
Lectures 15-16

Object-Oriented Design

1. Immutable Objects & Class

 String class is immutable; any object of type String is immutable

 Immutable classes must adhere to the following requirements:
o All data fields must be private
o There must be no mutator methods in the class definition
o There must be no accessor methods that returns a reference to a

mutable data field

Example of an accessor method that returns a reference to a mutable data field,
i.e., the dateCreated field is not immutable because of the existence of the
accessor method public java.util.Date getDateCreated();

 public class Student
 {

 private int id;
 private String name;
 private java.util.Date dateCreated;

 public Student(int ssn, String newName)
 {
 id = ssn;
 name = newName;
 dateCreated = new java.util.Date();
 }

 public int getId()
 {
 return id;
 }

 public String getName()
 {
 return name;
 }

 public java.util.Date getDateCreated()
 {
 return dateCreated;
 }
}

public class Test
{
 public static void main(String [] args)
 {
 Student student = new Student(123, “John”);
 java.util.Date dateCreated = student.getDateCreated();
 dateCreated.setTime(200000);

 /* dateCreated field has been changed,
 hence class Student is not immutable*/
 }

}

2. Scope of Variables

 Local Variables are declared & used inside of a method;

 the Scope of a Local Variable extends from its declaration to the end of the
method

 the same variable name may be declared many times in nonnested blocks
within a method definition

 Instance & Static Variables are the variables, i.e., data fields, for the class;
these class variables are declared inside the class definition

 the Scope of Class Variables extend over the entire class regardless of
where, in the class definition, they appear

 one exception: if data field B is initialized by data field A, data field A must
be declared prior to the declaration of data field B

 a given variable name can only be declared once as a class variable in a
given class definition

 if a Local Variable has same name as a Class Variable, the Local Variable
takes precedence & the Class Variable with the same name is hidden, i.e., it
is currently unavailable

class Foo
{
 int x = 0;
 int y = 0;

 Foo() { }

 void p()
 {
 int x = 1;
 System.out.println(“x = “ + x);
 System.out.println(“y = “ + y);
 }
}

Good Practice Principle
 Avoid using Class Names as Local Variable Names

Foo f = new Foo(); // f is an instance of Foo

x is declared as a class variable & also as a
local variable; inside the method p() the class
variable is hidden & the local variable x is
used

y is declared outside of the method p() but is
is available throughout the class, hence it is
available inside the method p()

hence

f.p() produces x = 1 & y = 0

3. The this Reference

 this is the name of a reference that refers to the calling object itself

p

public class Foo Foo.setK(10);

{ f1
 int i = 5; f1.setI(15);

 static double k = 0;

 void setI(int i) this.i = i; f2
 f2.setI(45);
 static void setK(double k) Foo.k = k;
}

this.i = i
“assign the value of the parameter i to the data field of the calling object”
 “this” refers to the object that invokes the instance method

Foo.k = k
“assign the value of the parameter k to the static data field k of the class
which is shared by all instances of the class

public class Circle
{
 private double radius;

 public Circle(double radius) { this.radius = radius; }

 public Circle() { this(1.0); }

 public double getArea()
 {
 return this.radius * this.radius * Math.PI;
 }
}

this

i = 15
k

i = 45
k

10

used to invoke another constructor

must be explicitly used to reference

not required; system infers that the

reference this is the desired meaning

Good Practice Principle

1. A constructor with no or fewer

arguments can invoke a constructor

with more arguments by using this(…);

this simplifies coding and improves

readability

2. Java requires that all constructors

appear before any other statements

4. Class Abstraction & Encapsulation

 Class Abstraction
o Separation of Class Implementation from the Use of the Class

 Class Contract – Provides the User with
o Collection of Fields and Methods that are accessible from outside the Class,

i.e., signatures of public methods & public constants
o Description of how these members are expected to behave, i.e., the Creator of

the Class describes it and lets the user know how it is to be used

 Class Encapsulation
o Details of the Implementation are encapsulated and hidden from the user
o Black Box

Examples:

 Math class Math.random();

 Loan Program see Liang pages 308-310

study this program in detail

Hint: Write a program that uses the desired classes before the classes are
implemented; this provides a set of methods and data items that need to be
incorporated into the implementation. In summary,

 Developing a Class & Using a Class are two separate tasks

 Attempting to use a class helps determine what features, data items and
methods the class should provide

 It is easier to implement a class after you have determined how it is to be
used in practice

5. Object-Oriented MindSet

 In real life, objects are associated with both attributes and activities, thus
when dealing with programs which are designed to mirror real life,

 Couple relevant Data & Methods together in Objects, making the program a
Collection of Cooperating Objects

 Such an approach provides for an easy way to produce Reusable Software

6. Course Class
The UML public contract provides the basis to design programs using the
Student Class; any implementation must conform to the expectations
delineated in the published agreement and is immaterial to its usage

Study the program listings 9.5 & 9.6 in
detail; listing 9.5 shows a typical use
of the Course class to construct
multiple instances, i.e., objects, and
manipulate their data. Listing 9.6
show one of multiple possible
implementations of the Course class;
exactly how the data is stored is not
important to the program in listing 9.5,
in fact, the internal data structures
and the internals of the methods
could be changed without having any
effect on the program in listing 9.5

When you invoke Math.random() you are not concerned how the system
produces the random number as long as it is sufficiently random for your stated
purposes. If the internal algorithm is changed, it does not affect your programs as
long as the public interface, i.e., the public contract, i.e., the UML specifications,
are not changed.

Course

-courseName: String
-students: String []
-numberOfStudents: int

+Course(courseName: String)
+getCourseName(): String
+addStudent(student: String): void
+dropStudent(student: String): void
+getStudents(): String []

+getNumberOfStudents(): int

7. Stack Class

public class StackOfIntegers
{
 private int [] elements;
 private int size;
 public static final int DEFAULT_CAPACITY = 16;

 public StackOfIntegers()
 {
 this(DEFAULT_CAPACITY
 }

 public StackOfIntegers(int capacity)
 {
 Elements = new int[capacity];
 }

 public int push(int value)
 {
 if (size >= elements.length)
 {
 int [] temp = new int [elements.length * 2];
 System.arraycopy(elements, 0, temp, 0, elements.length);
 elements = temp;
 }
 return elements[size++] = value
 }

 public int pop()
 {
 return elements[--size];
 }

 public int peek()
 {
 return elements[size – 1];
 }

 public boolean empty()
 {
 return size == 0;
 }

 public int getSize()
 {
 return size;
 }

}

StackOfIntegers

-elements: int []
-size: int

+StackOfIntegers()
+StackOfIntegers(capacity: int)
+empty(): boolean
+peek(): boolean
+push(value: int): int
+pop(): int
+getSize(): int

