Comp 585 Graphical User Interfaces
Noteset #1

GUI Design Principles

Traditional Monolithic Flow of Control Programming
User launches application
Application obtains inputs
Application runs to completion and outputs resulith no interaction with user
CLI: Command-Line Interface (or Interpreter)
User Launches Application
Application Begins Command Interpreter Loop
User Enters Command Plus Related Data
Application Computes Result, Outputs, Requests Kexnmand
Application Terminates When Next Command EqualsitQ
Event-Driven Programming
User Launches Application
Application Creates GUI
User Interaction with GUI (via Keyboard and MouS&®nerates Events
Application Is Organized into Event Handlers (oattks) Triggered by Events
Mouse Click on Button
Text Entered into Text Field
Scroll Bar Clicked/Dragged/Released

Application Terminates when “Exit” Menu Item Seled or Main Window is Closed
Event Handler for “Quit” Executes the Exit Code

In a multithreaded GUI application, the event tdraats as an invisible “blinking cursor”, waitingy fthe user to “do
something” on the GUIL.

GUIs and Software Engineering
Design of Application Should Be Modular, Not Moitloic
Conceptually, Both CLI and GUI are Interchangealagers
User Commands Replaced with Events

GUIs and OOP
Both CLI and GUI Require a Modular Design of Unrgierg App
Consistent With OOD, although OOD not required
GUI Is Naturally Described as a Collection of hateting Objects
Windows, Menus, Buttons, Lists, ...
Smalltalk (Xerox PARC) introduced the term OORi&scribe a collection of existing ideas
Message Passing from the Simula Programming Lagegu
Class, object, method, message passing, enctpraulaheritance, etc.
Xerox PARC also introduced PUI (PARC User Integfac
Screen Widgets Plus Pointing Device (“x-y positiodicator”)
Mass Marketed First By Apple, Then By Microsoft
OOP has its critics, but it dramatically simplgfithe presentation of GUI design
Some Early GUI APIs Made Poor Use of OOP Concepts
Global Objects Configured by Huge Number of Gldbanctions
C++ and the MFC
Later GUI APIs Follow a Much Improved Object Model
Java and Swing (JFC), C# and Windows Forms, WPF

GUIs and Software Architecture
A software app performs a set of related operationgser data to convert inputs to outputs.

e Numbers + arithmetic operations =» calculator = results
e Document + edit commands =» word processor = Updated document

Every app needs an interface as part of the ovas#tlivare architecture. The interface should beutardin the sense
that one interface can be substituted for anotligr liitle or no impact on the remainder of the app

Interface +
Command Business
Processor Rules

Complexity of interface depends on what servicesaipp provides to the user. The simplest is a cardriiae interface
or command line processor:

Request Input (Prompt)

Obtain Input

Parse Input into Commands and Arguments
Dispatch Command

Display Results

There has to be a trigger to indicate that thetilpg been captured and is ready to be processea cOmmand line
interface, the trigger is usually pressing the #hkey. On a GUI, the trigger is some user intéoscsuch as pointing
and clicking a button.

COMP 585 Noteset #1 2

Some apps break down into a collection of individuactions that don't interact:

+, argl, arg2
* plus(3,4)

“3+4” -, argl, arg2

P> g

i

g *, argl, arg2

/, argl, arg2

Other apps implement a state machine to walk tbethsough a complex sequence of inputs.

Book a flight ...
Enter your departure and destination airports ...
Enter the date you are traveling ...
Searching ...
Order flights by (1) cheapest to most expensivelg@st to most number of stops ...
Pick a flight ...
Seat selection ...
Payment info ...
Book another flight ...

Inputting Structured/Constrained Data

Inputs like times/dates are highly constrained.riisterface should constrain inputs to legal valiather than free form
entry of text followed by validation. Imagine a téox for date entry that allows the user to typg #xt, compared to a
“date picker” that displays an actual calendar,uber is constrained to pick only dates that éxstlicking on that
date’s position in the calendar

f/19/2010 [+]
30 November 2009
< July 2010 >

Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7) 9 10
11 12 13 14 15 16 17
18 20 21 22 23 24
25 26 27 28 29 30 31

Clear

Or imagine a user interface that allows the usenter a value that happens to have a valid rahfjea10, based on
some physical constraint (for example, the inpditdvive a physical device with physical limitsyhich is the better
GUI approach:
* A Atext field that allows the user to type ariyihy after which the input is validated. If aredjal value was
entered, an error box pops up and tells the ustey tgain.
* B: Aslider with predefined hash marks correspogdo the values 1 through 10. The slider can balget to
one of the legal valueshtfp://www.embedded.com/2000/0012/0012ial)htm

COMP 585 Noteset #1 3

There’s some tension between the application dpeel® desire to constrain what the user inputshesuser’s desire to
not be constrained and enter whatever they feel lik

GUI Design, User Expectations, Industrial Psycholog

Users will have better interaction with the GUtédrtain visual cues are recognized and followedbamily. Over time
users have developed a set of mental expectatiomsat a user interface will look like. This impathe software
developer’s choice of screen layout, menus, toslbiaons, dialog boxes, etc. Microsoft has recesttyted
experimenting with “ribbons” as a replacement fanms and toolbars. Touchscreens have expanded¢hbwary of
input gestures that an app may need to respond to.

“The idea of direct manipulation of objects on eegm is integral to the concept of a graphic iatesf In fact,
the idea of a GUI derives from cognitive psycholotipe study of how the brain deals with communaatiThe
idea is that the brain works much more efficiemtith graphical icons and displays rather than withrds —
words add an extra layer of interpretation to tmunication process. Imagine if all the road sigms saw
were uniform white rectangles, with only the wotidsmselves to differentiate the different commands,
warnings, and informational displays. When the (Btsigns hardly look different from the “Resume Higay
Speed” signs, the processing of the signs’ mesdammames a slower and more difficult process, anddy
have even more wrecks than you have ndwtg://www.sitepoint.com/real-history-gui/

Expectations regarding menus have become highlifspe
File: New, Open, Save, Save As, Close, Exit
Edit: Cut, Copy, Paste, Undo, Redo, ...

For highly structured data like text, users nowfamnly expect specific keyboard hotkey bindingsanetiess of the app:
Ctrl-A select all
Ctrl-X Cut to Clipboard
Ctrl-C Copy to Clipboard
Ctrl-vV Paste from Clipboard

Context sensitive popup menus are expected on aemnight click, more generally, whenever the “pofrigmer” for a
specific platform is input
Touch screens support new gestures like swipeshefhe right, pinch, expand, etc.

If the question is “why does the GUI need to bd it in *this* way,” the answer might be simplyreeet user
expectations. Most users don’'t need a user maauahtn basic interaction with the app.

COMP 585 Noteset #1 4

Outline of Java Swing Tutorial
http://docs.oracle.com/javase/tutorial/uiswing/

Trail: Creating a GUI With JFC/Swing, aka The Swihgtorial

This trail tells you how to create graphical usgeifaces (GUIs) for applications and applets, gisire Swing
components. If you would like to incorporate JavdRd your Swing application, please see InteggpfiavaFX into
Swing Applications.

Getting Started with Swingis a quick start lesson. First it gives you adbibackground about Swing. Then it tells you
how to compile and run programs that use Swing covepts.

Learning Swing with the NetBeans IDEis the fastest and easiest way to begin workirtg &wing. This lesson
explores the NetBeans IDE's GUI builder, a poweidature that lets you visually construct your Giiapl User
Interfaces.

Using Swing Componentdells you how to use each of the Swing componentsuttons, tables, text components, and
all the rest. It also tells you how to use borderd icons.

Concurrency in Swingdiscusses concurrency as it applies to Swing pragring. Information on the event dispatch
thread and the SwingWorker class are included.

Using Other Swing Featuregells you how to use actions, timers, and theesydtray; how to integrate with the desktop
class, how to support assistive technologies, twoprint tables and text, how to create a splasbesgrand how to use
modality in dialogs.

Laying Out Components Within a Containertells you how to choose a layout manager, howstaach of the layout
manager classes the Java platform provides, hawd@bsolute positioning instead of a layout manauge how to
create your own layout manager.

Modifying the Look and Feeltells you how to specify the look and feel of Sgvitomponents.

Drag and Drop and Data Transfertells you what you need to know to implement dedasfer in your application.
Writing Event Listeners tells you how to handle events in your programs.

Performing Custom Painting gives you informationpamnting your own Swing components. It discusseatmg issues
specific to Swing components, provides an ovendéwainting concepts, and has examples of custanpooents that
paint themselves.

A good place to start is “Getting Started” ... Neadté a look at “Using Swing Components”, with sulthiegs “Visual
Tour” and “How To”

For all examples, when the text points you to theree code, please take a moment and read theescadle.

COMP 585 Noteset #1 5

Exercise
Designing a GUI for an Existing Application

Imagine taking an existing application without al@dd designing a GUI for it. The simplest GUI campnts for
interaction are:

e Text fields for inputs and results
e Buttons for command triggers

Formula Evaluator
» One text field for each input
* One button for computation of the formula
* One text field for result

Simple Calculator
» Two text fields for each input
e Four buttons for each arithmetic operation
* One text field for result

Desktop Calculator (Integer)
* One text field to implement the display
* Ten buttons to represent each digit
» Four buttons to represent each operation
» One button to represent the equals operation
» One bhutton to represent the clear operation

Telephone Number Database Lookup
* One text field to enter name to look up
e One button to trigger the search operation
» One text field to display the telephone number hHwddls the result of the search

For most of these applications, you can imagina#ial non-GUI application that is based on a Cluh the CLI, each
user choice may roughly correspond to a methodhil&iy, in a GUI version of the application, edalitton may
roughly correspond to a method.

CLI
A menu method or equivalent implements an “infthggervice loop. Application is idle until user impdescribing the
next operation arrives from the keyboard.

The definition of the menu method is under programsncontrol. An if-else dispatcher determinesahhinput has
arrived via keyboard input from the user and thispatches or invokes the corresponding method, rifienns to await
the next input

GUI
Application uses threads and events to remainudti “something happens”. For example, a mougk an a button
triggers an event that causes the application skaup” and convert inputs to outputs.

The event processing procedure is inherent in pleeating system and language runtime. Only thetdvandlers are
under programmer control. In other words, the progner defines a method to describe the applicati@sponse to
some event. The OS and application runtime aggoresble for detecting that the event has occuaratiinvoking the
method.

More GUI Design Exercises

Static Counter
Use a text field to display a counter, and an ‘&meent” button to trigger one increment for eacbkcli

Dynamic Counter
Use a text field to display a counter, “start” dstbp” buttons, and a separate thread to contirlyansrement the

counter at a rate of one increment per second.tfirkad runs when the “start” button is clicked] @auses when the
“stop” button is clicked.

COMP 585 Noteset #1 6

Design Guidelines

Effective GUI design is based on principles atitliersection of computer science, graphic arts,iaddstrial
psychology. In this course, the focus is how te esisting APIs to create traditional GUIs thatveotommon interface
problems. Briefly, here are some guidelines basethe psychology of human-computer interaction pinaduce user-
friendly, satisfying GUIs.

Guidelines

* Expose features of application to the user in &uitime way (in practice this means proper use widows,
dialogs, documents, files, menus, hot key)

e Let the user take control: don’t disable too mamgctions.

e Limit the number of options at the top level

e Adopt commonly accepted conventions for menu systairenever practical

» Adopt commonly accepted conventions for dialog Isaxeodal and modeless) whenever practical

» Preserve the meaning of common GUI keywords su¢iS, “Cancel”, “Cut”, “Copy”, “Paste”, “Save”,
“Save As ... “and don't invent your own quirky or infsical interpretations.

» Use threads to offload time-consuming tasks tdoiekground and maintain the perception of respensiss.
Use hourglass cursors, progress bars, etc. if timmsuming tasks must run in the foreground.

» Use commonly accepted guidelines for controls algets to limit complexity and default values.

* Provide default values and make them preselectélesocan be easily modified.

e For GUIs that encompass multiple screens, proviahsistency of design across all screens. As inifpabe
websites, provide navigational controls and feelltadelp the user maintain their bearings. A quialent
of CSS for widgets.

« Keep in mind the difference in perspective betweevice users and power users.

* Maintain GUI state between invocations of the aggtion, so that the GUI returns to the state thee let it in
(very common example that many apps screw up:ofien/save dialogs which reset to default dir betwe
invocations)

* Interaction with the mouse can be very intuitivet power users doing “heads-down” data entry caaip
faster if they keep their hands on the keyboarakeTadvantage of keyboard equivalents -- mnemamds
accelerators. Also, preserve an intuitive tab ofdiecontrols on a single page.

» Support Undo/Redo as much as practical. Admittestiyne user actions are not undoable.

« Use GUI modes including enabling/disabling of witkg® guide the user into entering only valid inpat
avoiding invalid input/operations, but don’t overido Too many disabled functions are a negative.

» Use structured widgets for inputting highly struet values (e.g. calendar dates), don't just thupv@ text
boxes with no input validation.

e Onthe horizon: increasing attention must be gieeADA-compliant interfaces. Currently, complignis
voluntary for most vendors, but will become inciegh/ mandatory in the future. Example: don't usdor
alone to communicate important aspects of a GUI.

COMP 585 Noteset #1 7

Overview of API-based GUI Programming

There exist many useful IDEs that allow a GUI depef to implement the GUI graphically, using a daagl-drop
approach, selecting components from a palette miglea NetBeans for Java, Visual Studio for C++ @#d In this
course, the emphasis is on building GUIs progranuaidt, which means writing the code manually, refecing the
API as necessary to call functions or methodsatercomponents. IDEs are an essential part obagg GUI project,
but the projects in this course must be built paogmatically.

APIs for constructing GUIs typically use an OOD/O@&gproach. Elements of the GUI appeaolggctswhich are
customized througproperty manipulation. A typical set of objects to build a simple GUdtiude:

Containers: usually rectangular regions on the screen dktdpshat visually group together GUI elementss®l
called windows, forms, frames, panels, dialogs, &ach of the organization of a complex GUI corfresn careful
arrangement of multiple containers via nesting)dil etc.

Components individual elements that appear within some aomr, and which provide an I/O function. Alsoledl
widgets or controls. Examples include text boxefiedds, push buttons, radio buttons, check bohsts, scroll bars,
menu systems (menu bar, menus, menu items, popeapsnwalking menus, etc.), tables, trees.

Other Software “Agents”: behind-the-scenes objects that help manag®ttednd behavior of the GUI. Examples
includelayout managersandevent listeners

After the design phase of the GUI is completed cibie to build the GUI is written, following comm@©OP guidelines.
Objects are instantiated, customized and linkedttogy. The early stages of this process are amaso building a
bookcase: insert tab A into slot 3, etc.

Layout Issues

A big source of potential complexity in GUI codiigghow to handle layout issues. In a GUI witstatic layout, GUI
elements are positioned with respect to an x-ydioate grid within the display area of some coreaif@also called
absolute positioning. The usual assumption is that once the compesrtente been laid out within the container, their
relative positioning will not change. Such an asgtion usually also implies that the size of thatemer will also not
change. This approach is typically applied by pllevironments such as Visual Basic.

A newer approach is to allow dynamic layouts, whieuire the use of a layout manager. Componeatmiially laid
out programmatically, but positions are determibga simple set of principles rather than by altsokdy coordinates.
The approach assumes that the dimensions of thainenmay be dynamically changed by the user. |aymut
manager is then charged with dynamically repositigitomponents to keep the overall look-and-feel mu@aning of
the GUI coherent. This is the approach used bg $aving, and increasingly by .Net Windows Forms.

Events

The static look and feel of a GUI is largely accdistped by standard OOP programming that buildsamhects
objects. This will build a push button, for exampdnd make it appear on screen. To specify witatld happen
dynamically when the button is pressed requiredtiadd! code defining the GUIs response to eveitslava Swing,
event responders are called event listeners. Tarermany kinds of events — keyboard events, meusets, window
events, etc. — and each event has its own evégridis A similar approach is used by .Net Wind&esms, where the
event responder or handler is called a delegaéeh E/pe of event is handled by its own event daleg

COMP 585 Noteset #1 8

Review of Java Features

Types of Java Class Definition
Look at the following program skeleton:

public class NestedClass {
publicclass A{... }
public staticclass B{ ... }

public static void main(String[] args) {
NestedClass nc = new NestedClass();
A a =nc.new A();
B b = new B();

}

class Driver {
public static void main(String[] args) {
NestedClass nc = new NestedClass();
NestedClass.A a = nc.new A();
NestedClass.B b = new NestedClass.B();

}

NestedClass and Driver are calteg level classebecause they are not nested inside other classes.
Top level classes are inherently static, even thdbg static keyword is not added (cannot be adatetheir definition.

A and B are nested classes
A is a nonstatic nested class (aka inner class)
B is a static nested class
Static Nested Classes behave almost identicaligptdevel classes.

Result after compiling is
Driver.class
NestedClass$A.class
NestedClass$B.class
NestedClass.class

Seehttp://mindprod.com/jgloss/nestedclasses.ttmh good discussion about the different kinddafa classes.

COMP 585 Noteset #1 9

Inner classes are inherently non-static. Objettsidnner class are guaranteed to have availatdéeeence to an object
of the enclosing outer class (a second referenceddthis”). For static nested classes this isthetcase.

public class Outer {
public class Inner {
Inner a = this;
Outer b = Outer.this;

}

class Driver {
public static void main(String[] args) {
Outer x = new Outer();
Outer.Inner y = x.new Inner();

}

For future reference, this is different from sontieeo languages like, for example C#, which suppstetic nested
classes but not inner (non-static) classes.

COMP 585 Noteset #1 10

Anonymous Classes

Anonymous classes are used frequently in Java Ggiramming to create simple one-time-use objeath ag event
listeners. There are several guidelines for wheinguan anonymous class makes sense:

» The class will be used to instantiate only one abj®r example, an event listener).

» The class definition is short and simple (like AationListener interface, which requires only one method —
actionPerformed()).

» The class interacts closely with one other clad®e information coupling is so strong that makihg first
class an inner class of the second results in pli§ied software architecture (for example, an oufass that
represents a GUI element such as a panel and agranas class that represents a listener assodiatiedhe
panel class’s buttons or other controls).

Note that these are only guidelines, not requirdsien

How to Create Objects of Anonymous Class Types
When we talk about using anonymous classes in &, we really mean is that we're creatotgects whosetype is
defined byan anonymous class To create such an object we do the following:

* Invoke a constructor of the object’s superclass fflass is anonymous, but the superclass isn’t)

« Between the right parenthesis and the semicolateph block of code delimited by curly brackets.

» Inside the brackets, place the definition of thergimous class. This codtaplicitly extends the superclass.

* What can be extended is very limited, usually deftnitions of new methods or overrides of existarg
inherited ones.

e Some very common uses of anonymous classes apgifdng a simple listener by implementing an ifaee,
or by creating a thread by overriding the run mdtho

COMP 585 Noteset #1 11

Example

public class Box {
public int getSize() { return 3; }
}

class Demo {
public static void main(String[] args) {
Box b = new Box();
Box ¢ = new Box() { /] <-----
public int getSize() { return 4; }
h

System.out.printin(b.getSize());
System.out.printin(c.getSize());
System.out.printin(b.getClass().toString());
System.out.printin(c.getClass().toString());

}
}
Output is
3
4
class Box

class Demo$1

Observations
* Whatis object b's type? Box

* What is object ¢'s type? Anonymous subclass afsBox; this class is named “Demo$1” by the compile
* You cannot call the constructor for an anonymoassby name, because it's anonymous. You can aiiljhe
constructor for its superclass, then override ighods on the fly, at the same time that the olgeattually

constructed.

COMP 585 Noteset #1 12

Example
The outer class is named “Anon”, and the anonynotass is defined as an extension (subclass) of t&@mmeClass”.

class SomeClass {

int x;

inty;

public SomeClass(int xi, int yi) {
X = Xi;
y=yi

}

public void print() {
System.out.print(x + " " +y);
}

1 public class Anon {

2 public static void main(String[] args) {

3

4 System.out.printin("Example 1 ---");

5

6 SomeClass a = new SomeClass(2,6);

7 a.print();

8 System.out.printin(");

9

10 System.out.printin("Example 2 ---");

11 new SomeClass(5,3) {

12 public void print() {

13 System.out.printin(x +"," +y);
14 }

15 }.print();

16

17 System.out.printin("Example 3 ---");

18 SomeClass b = new SomeClass(8,7) {

19 public void print() {

20 System.out.printin(x + "," +y);
21 }

22 3

23 b.print();

24 System.out.printin("class =" + b.getClass());
25

26 System.out.printin("Example 4 ---");

27 SomeClass ¢ = new SomeClass(10,15) {

28 public void print() {

29 System.out.printin(x +"," +y);
30 }

31 3

32 c.print();

33 System.out.printin("class =" + c.getClass());
34 }

35}

COMP 585 Noteset #1 13

Output is

Example 1 ---

26

Example 2 ---

53

Example 3 ---

8,7

class = class Anon$2
Example 4 ---

10,15

class = class Anon$3

As you can see, objects that belong to an anonymilass are unique members of their class.
« Example 2 creates an anonymous class object, deertie print() method, and immediately calls ithaut
saving a reference to the object.
« Examples 3 and 4 create two objects of what appedrs the same class, but the Java environmexis tileem
differently, since it has no way to analyze andfitonthat the classes are the same.

COMP 585 Noteset #1 14

Interfaces and Abstract Classes
Used as an OOD strategy. Some features of softsegign can be communicated by method signatuhesitad from
interfaces and classes. There is a spectrum eflplitees from purely abstract to purely concrelasses.

Abstract Class

A partially implemented (or wholly unimplementedass. An abstract class cannot be instantiatedsulally contains

at least one abstract method, but it doesn’t haveAtclass definition can be explicitly abstra the keywordabstract.
By this mechanism, a class may be abstract evergthid contains no abstract methods, and no unimgitéed methods.
A class may be implicitly abstract by virtue of piplartially implementing an interface, or partiaflytending another
abstract class.

Abstract Method
A method that includes the keyword “abstract” mdeclaration and which doesn'’t include a bodyjlaimo a function
prototype or external function declaration in C &idr. The definition must include the return amdagmeter types.

Interface

Java interfaces are commonly used to define eigtahkrs. An interface defines a set of methodatiges without
specifying the implementation of the methods. dsirtype of inheritance called implementation,asslthat
implements an interface is obligated to provid@dyb(block of code) for each method named by theriace, even if
the body provided is empty. The methods namedtiptarface are implicitlabstract, public, andnon-static.
Interfaces less commonly also contain data deaterst These are implicitlgtatic andfinal. An interface is analogous
to a pure abstract class, that is, a class in wiicimethod has been implemented.

Interface (Pure Abstract Clasé)> Abstract Clas&-> (Concrete) Class
Java Inheritance

“Traditional” Inheritance via “extends”
» Aclass may only directly extend one other class
* ‘“subclass” the class being defined (the extender)
» ‘“superclass”: the class being extended (the exiend
* Any class thatloesn’t explicitly extend a classnplicitly extends clas®bject

“Multiple” Inheritance via “implements”
e Aclass may implement an arbitrary number of “iféees”
« If any interface methods are unimplemented, theltieg class is abstract.

Other Java Features to Be Reviewed Later

* Polymorphism
» Class Cast Exception

COMP 585 Noteset #1 15

Interfaces
An interface is a special “pure abstract” clasdl. ethods are implicitly abstract and non staficterfaces can be
partially implemented by an abstract class or fiutiplemented by a non-abstract class.

Example 1

interface Iface {
public void a();
public void b();
public void c();
public void d();

}

class C1 implements Iface {
public void a() { System.out.printin("a")
public void b() { System.out.printin("b");
public void c¢() { System.out.println("c");
public void d() { System.out.printin("d");

'}
}
}
}
}

class Driver {
public static void main(String[] args) {
C1 x = new C1();

x.a();
x.b();
x.c();
x.d();
}
}
Example 2

class C2 implements Iface {
public void a() { System.out.printin("a"); }
public void b() { System.out.printin("b"); }
public void c¢() { System.out.printin("c"); }

}

> javac C2.java
Output is

C2.java:1: C2 is not abstract and does not override abstract method d() in
Iface

public class C2 implements Iface {
N

Example 2 (corrected)

abstract class C2 implements Iface {
public void a() { System.out.printin("a’
public void b() { System.out.printin("b’
public void ¢() { System.out.printin("c"

)}
)}
)}

COMP 585 Noteset #1 16

Example 3
Multi-level full implementation of the original iatface:

interface Iface {
public void a();
public void b();
public void c();
public void d();

}

abstract class C2 implements Iface {
public void a() { System.out.printin("a"); }
public void b() { System.out.printin("b"); }
public void c¢() { System.out.printin("c"); }

}

class C3 extends C2 {
public void d() { System.out.printin("d"); }
}

class Driver {
public static void main(String[] args) {
C3 x = new C3();
x.a();
x.b();
x.¢();
x.d();

COMP 585 Noteset #1 17

Design Example
Suppose we design a class to demonstrate sorgjogthims, as in COMP 182. We want to test more t@e sorting
algorithm, but the sort operation should be acbés$iom the interface with a common name sort().

One Design
class BubbleSorter {
public int[] data;
public void generate(int n, int range) {}
public void bubblesort() { }

class QuickSorter {
public int[] data;
public void generate(int n, int range) {}
public void quicksort() { }

In C#, the delegate feature allows the programmelefine a method placeholder or pointer that eaplbgged in with
a specific method at runtime. Java doesn't rdalye an equivalent. The “Java Way” to solve tleisigh problem is to
use an abstract method.

/I abstract superclass with abstract method sort()
public abstract class Sorter {
public int[] data;

public void generate(int n, intrange) { ... }
public abstract void sort(); // semicolon required here

}

/I each subclass overrides the abstract method

class BubbleSorter extends Sorter {

public void sort() { System.out.printin("bubble"); }
}
class QuickSorter extends Sorter {

public void sort() { System.out.printin("quick"); }
}

class Driver {
public static void main(String[] args) {
Sorter sorter;
sorter = new BubbleSorter();
sorter.sort();
sorter = new QuickSorter();
sorter.sort();

}
So defining a method to be abstract in the supgscthen providing a concrete implementation inleckss that
overrides the abstract definition is one Java exjait of the delegate feature (function pointerCi to be discussed
later.

One limitation of this approach is that construstare not inherited. Each subclass would needdefine constructors
even if they are all similar.

What OOP feature is demonstrated by the sortef)satls in the driver above?

COMP 585 Noteset #1 18

Other Java Features

* Generics

As of Java 1.5, collections classes (in the jallgpatkage) can be customized for specific baseetd classes, using
the new generics framework. The use of generinsrgtes much tedious typecasting code, and reisu#tafer code,
since the old style typecasting is vulnerable towling ClassCastException.

Example: Vector of Strings

Old Style:
Vector v = new Vector();
String[] data = {"abc”, “def”, “ghi"};
for (int i=0; i<data.length; i++)

v.add(datali]); Il insert Strings into Vector
String s = null;
for (int i=0; i<data.length; i++)
s = (String)(v.elementAt(i)); // access String in V ector

Generics Style:
Vector<String> v = new Vector<String>();
for (int i=0; i<data.length; i++)

v.add(datali]); Il insert Strings into Vector
String s = null;
for (int i=0; i<data.length; i++)

s = v.elementAt(i); /[access String in Vector

» Autoboxing and Autounboxing

Java requires that the programmer treat primitata dvith value semantics and reference data wiieece semantics.
Some contexts, such as most java.util collectidasses, require references to objects and cannétwith direct
primitive values. For this reason, each primitilega type has its own “wrapper” class type, usettd¢ate an object to
“wrap” a primitive value into a simple object whesference syntax is required.

Creating a wrapper object and inserting a primitiskie is called “boxing”, and extracting a priméivalue from a
previously boxed wrapper object is called “unboXings of Java 1.5, the compiler will perform autding and
autounboxing, which means that conversions betyeiemtive values and wrapper objects will be penfied implicitly
and automatically.

Old Style
Vector v = new Vector();
intx =5;
Integer y = new Integer(x);
v.add(y);

New Style
Vector v = new Vector();
int x =5;
v.add(x); /I autoboxing of x occurs here

There is a similar auto-unboxing effect on the o#al, when removing a wrapper object and assigioirggprimitive.

COMP 585 Noteset #1 19

* New “for” Syntax (the so-called “foreach” loop)

Old Style

int[] data = {3,5,7,9,11};

for (int i=0; i<data.length; i++) System.out.printl n(datali]);
New Style

int[] data = {3,5,7,9,11};
for (int x:data) System.out.printin(x);

In the new style, the explicit index variable digaprs. The declared variable x acts agexator , taking on in turn
each value in the array data. The old style isusteful and not going away! The new style is stimes calle the
“foreach” loop, although there is no “foreach” keyna in Java.

New in Java 7
Swing

JLayer Class for decorating components and reipgro events

Nimbus Look and Feel

Better Mixing of Heavyweight and Lightweight Coorgents

Shaped and Translucent Windows

Hue-Saturation-Luminance (HSL) Color Selectiod@olorChooser Class

Java Programming Language

Other

New in Java 8

Binary Literals [intx= 0b10101;]

Underscores in Numeric Literals [inty =123 4389;]

Strings in switch statements

Try-with-resources statement

Catching multiple exception types, rethrowingeptions with improved type checking

Type inference for generic instance creation

Improved Compiler Warnings/Errors with Non-Rédifie Formal Params with Varargs Methods
Non-reifiable type: not completely availablerattime

Networking

Security
Concurrency Utilities
Java 2D

Java XML

Lambda Expressions
Package java.util.stream

COMP 585 Noteset #1 20

Java Packages of Interest

General-interest packages
java.lang (System,String,wrapper classes)
java.util (ArrayList,Vector,Stack, other colleatis)
java.io (files, streams, readers, writers)

awt: abstract windowing toolkit
java.awt
java.awt.event
java.awt.image

swing: aka JFC or Java Foundation Classes

javax.swing
javax.swing.event

The Abstract Windowing Toolkit (AWT)

e java.awt
* java.awt.event
* others

Original set of class definitions for building GUIs
Color, Point, Dimension, Font
Button, TextField, Panel, Canvas, Frame

AWT widgets are “heavyweight” components, which methat the AWT widget is associated witheger object
written in native code (not Java) that actuallydias the drawing of that widget on the screen. wieaight
components have good performance, but their “laud-fzel” is more closely bound to the style usedh®syoperating
system that the application is executing on. Madyeut that later.

The Java Foundation Classes (JFC)
* javax.swing
e javax.swing.event
+ others

JFC was code-named “swing”, and the name stuclesDot replace or supersede AWT, the two must e carefully
in tandem. Certain AWT classes are not repladgalor, Point, Dimension, Font

Most widgets are reimplemented with a new classnoégg with “J”: JButton, JTextField, JPanel, JiFe
A few top-level Swing components, such as JFramgestil “heavyweight”, but most others are “lighaight”. Use of
lightweight components makes possible a “pluggadni&-and-feel” feature for the visual style of cooments. Care

must be taken when using heavyweight componersving to correctly allocate and deallocate the ueses they use,
in order to avoid memory leaks.

COMP 585 Noteset #1 21

Outline of Java Swing GUI Building Blocks

Top-Level Containers

e JFrame

» JDialog

* JApplet
Other Containers

 JPanel

e JScrollPane

e JSplitPane

e JTabbedPane

Basic Components

e JlLabel
 JTextField
 JButton

» JRadioButton (see also class ButtonGroup)
* JCheckBox
+ JComboBox

Complex Components

o JList
« JTree
+ JTable
Special Purpose Components
» JSlider
e JSpinner

Text Components
e JTextArea
e« JTextPane
« JEditorPane

Special Purpose Dialogs
» JOptionPane
» JFileChooser
» JColorChooser

2D Graphics Classes from java.awt used with javaxing Classes

e Graphics
e Color

e Dimension
« Font

* Image
 Point

* Polygon

» Rectangle

COMP 585 Noteset #1 22

“Model View Controller” Framework for GUI Elements
The GUI is the layer of the software applicatioattives the end user intuitive access to the egjidin’s features.

A common framework for discussing how GUIs work@ledmodel-view-controller.
* model: a container for data in storage (arraytoretinked list, other data structure)
» view: avisual representation of the data insiderhodel (often a subset of the complete data set)
» controller: a software agent that maintains cdastsy between model and view.

In Java Swing, the view and controller are merged a single element called a delegate (which b#simg to do with
C# delegates discussed later).

Heavyweight vs. lightweight GUI components
A good article/white paper on the difference betwait and swing
http://www.oracle.com/technetwork/java/painting-08@.html

Painting in AWT and Swing

AWT components areeavyweight This means that the drawing or painting of thmponent to the display depends
on a code provided by the local platform (not thealpackages). For every heavyweight componesre ik associated
with it a "peer" that knows how to draw a nativendow according to the software provided by the lipéatform.

In contrast, most (but not all) Swing componentslightweight. This means that they will always be displayethimi
the boundary of some heavyweight component in theal hierarchy, but that within their sub-regidrttee screen, the
component is drawn completely by code providedheyjava packages. In short, a GUI built from Swéngponents
has far fewer native windows running around clutigup the desktop.

Painting is via callbacks.
Programmer places all painting code in the cakbac
System calls the callback at the appropriate time.
System-triggered painting
paint(Graphics g) [note: AWT only, do not ovegigaint() in Swing]
paintComponent(Graphics g)
App-triggered painting
repaint()
overridden versions provide coordinate defining $hbregion to repaint

There is a third method update() which is subtffedént from paint()/repaint(). The bottom line f@htweight
components is that update() and repaint() are gallgthe same, so don’t mess with update().

Bottom line is that any custom painting defined for a compobgrthe programmer goes into the callback

paintComponent(). The system decides when it needs to be calledrder for the app to trigger a repaint, call the
repaint() method, which usually occurs from the event thread

COMP 585 Noteset #1 23

Inheritance Hierarchy
This is critical in defining GUI elements that haaveonsistent APl and behavior.

Heavyweight Examples:
JFrame
Object(lang)/Component(awt)/Container(awt)/Windawt)/Frame(awt)
JDialog
O/C/C/W/Dialog
JApplet
O/C/C/Panel/Applet

Lightweight Examples:
JButton (lightweight)
O/C/C/IComponent(swing)/AbstractButton(swing)
JTextField
O/C/C/IC/ITextComponent(swing)
JLabel
O/C/ClaC
JMenultem
O/C/C/JC/AbstractButton
JMenu
O/C/C/IC/AbstractButton/IMenultem
JPanel
O/C/ClacC

At each step in the hierarchy, certain operatioasraroduced that are then available to all sidssa.

Object
clone()
toString()
equals()
wait()/notify()

Component
"visual" properties that allow the object to bawin/painted to the display
location and size properties
font
foreground/background color
graphics context
keyboard focus
paint callback method

Container
list of contained components
layout manager

JComponent
pluggable Look and Feel (L&F)
input and action "maps" to provide convenient kejse handling
tool tips
painting that supports double buffering and basder

COMP 585 Noteset #1 24

Visual Containment Hierarchy
Related to the heavyweight vs. lightweight discus®arlier every Swing GUI is built with a minimwhone "top-
level" container. This is usually a JFrame. A JReasna heavyweight component that provides a winthowhich the
rest of the application's visual information ispgdés/ed. Any other element that is a part of theesapplication is either:
another independent top-level container (2nd JFrdilog, etc.)
a lightweight component attached to the visualdnghy rooted by this JFrame.

Visual Hierarchy

Not all Java objects ardsual objects. A String is a Java object, but it doepo$sess the requisite properties to allow it
to be displayed directly on the desktop. The GUlding blocks in the AWT and Swing packages eisial

components that can be displayed.

In addition to being visual components, the elemént Java Swing GUI must be arranged visaal hierarchy for a
specific application, rooted by a top-level congaiffor example, JFrame). An internal containke liPanel is attached
to the JFrame. Other components (JButton, JTdgtRleabel) are attached to the JPanel. Oncelémeeats of the
GUI are assembled, the complete visual hierarcldysiglayed by making the JFrame visible.

The way in which the visual hierarchy is built pragymatically implies properties of the componenishsas stacking or

Z-order. This will impact how the visual hierarcisydisplayed at any one time (which componentsiaglayed on top
of or behind other visual components, for example).

COMP 585 Noteset #1 25

Inheritance Hierarchy for Swing and AWT Classes
Seehttp://www.comp.nus.edu.sg/~cs3283/ftp/Java/swimgeat/archive/what_is_arch/tool set/tool set.html

JComponent

HTMLEditorK it | AbstradButton

JComboBox

JLabel

| JlextArea

JList

JTextF leld

JMenuBar

Jane

JToggleButton JButton I | Menultem | JPopupMenu
’—I—’ JS crollBar
| JCheckBox | | JRadioButton JScrollPane
| I JTable
| JRadioButtonMenul I | JCheckB axMenul I | JMenu JTree

Typo: JPane should be JPanel
Components that descend from JComponent are liggiiydout not all Swing classes are descendani€ofmponent.

Object=>» Component®» Container® JComponent

Container > JComponent = ()]

Container > Panel > Applet > JApplet (hw)

Container > Window > Dialog > JDialog (hw)
Window > Frame > JFrame (hw)
Window > JWindow (hw)

¢ Descendants of JComponent are lightweight components
¢ Descendants of Container (but not JComponent) are heavyweight (JFrame, JWindow, JDialog, JApplet)
* Note there is no JContainer Class.

Briefly:
Lightweight components are rendered in Java
Heavyweight components have a companion objelddcal peer
The peer is implemented in native (non-Java) code
The peer renders the heavyweight object
The visual containment hierarchy of any Java Gé&flibs with a heavyweight component
For starters, we will assume JFrame, but otherpassible.
Rules for mixing heavyweight and lightweight compats in one app are complex.
But Java 7 has just introduced some improvementthis situation.

Important constraint: cannot add a Window to atGioier
Throws lllegalArgumentException at runtime

The inheritance hierarchy simplifies the manageméobmmon properties such as
Size
Position
Array of Subcomponents

COMP 585 Noteset #1 26

Framework for a Widget-Based Swing Application

From the main method

e Create a JFrame object (a heavyweight top-levetaioer)
» Create a JPanel object (the internal containepotenit pane of the frame)
» Attach the JPanel to the JFrame.

* Create desired wid
* Give the JFrame a

gets and attach them to the JRgpieally, this simply uses thedd method).
size.

» Set the JFrame’s “visible” property to “true” (sthaibe the last step of the GUI building process).

Code Example: SimpleForm.java

import java.awt.*;
import javax.swing.*;

public class SimpleForm {

public static void main(String[] args) {

}

Framework for a Drawi

JFrame frame = new JFrame("Simple Form Demo");
JPanel panel = new JPanel();

JLabel label = new JLabel("Enter Value:");
JTextField textfield = new JTextField(10);

JButton button = new JButton("Submit");

panel.add(label);

panel.add(textfield);

panel.add(button);

frame.setContentPane(panel);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLO SE);

frame.setSize(400,100);
frame.setVisible(true);

ng-Based Swing Application

» Similar to above framework.

» Instead of attaching widgets to the panel, obtaéinGraphics object for the panel, and apply theapjate drawing
method to the graphics object.

e Best approach is to subclass the JPanel classvandde the a paintComponent() method.

» This method is automatically called by the JVM wiemnecessary to redraw the JPanel.

COMP 585 Noteset #1

27

Simple Drawing Example: Panel with Simple Geometd Drawing Instructions

Note: programming style is not recommended, ptteseonly for simplicity

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Drawing {
public static void main(String[] args) {
JFrame f = new JFrame("Draw");
final JPanel p = new JPanel();
f.setContentPane(p);

Thread t = new Thread() {
public void run() {
Graphics g = p.getGraphics();
g.setColor(Color.RED);
g.fillRect(10,10,50,75);
g.setColor(Color.GREEN);
g.fillRect(30,40,80,90);

h
f.setSize(500,300);

f.setVisible(true);
SwingUltilities.invokeLater(t);

}

This example demonstrates a simple relationshiwdest frames, panels, graphics, and drawing meth8tde is poor,
however, and does not accommodate necessary refrést application.

COMP 585 Noteset #1 28

A Simple But Complete Widget Example: A Threaded hteger Counter with Button Control

B(=13
I Start | Stop || Reset |

IQuitI

Counter 1.0

import java.awt.*;
import javax.swing.*;

public class Counterl {
public static void main(String[] args) {

JFrame frame = new JFrame("Counter"); // create o bjects
JPanel panel = new JPanel();
JTextField tf = new JTextField(5);

tf.setText("0"); Il property values
panel.add(tf);

panel.add(new JButton("Start"));

panel.add(new JButton("Stop"));

panel.add(new JButton("Reset"));

panel.add(new JButton("Quit"));
frame.setContentPane(panel);

frame.setSize(300,200); /I set size
frame.setVisible(true); /I make visible

}

Version 1.0 will draw the GUI, and it's a good sirag point for simply demonstrating some basic deas$ of the API.
But there are many problems. For example:
* Poor use of OOP
* No encapsulation of GUI features into an object.
» Reference variables for GUI components definedeal lvariables inside main method.
* Main method should be reserved for client codeshttuld not handle internal detail concerned witation
and management of the GUI itself.

COMP 585 Noteset #1 29

GUI Building and OOP/OOD

As with every programming problem category, GUIgreanming supports many different software architextstyles”.
Every programmer will want to develop their ownlstyHere, | suggest a very popular style for oigjag the code
required by a GUI. But every programmer should fiesee to use this as a starting point, and expenim Also, in some
cases different problems will be best served bigdint styles.

The GUI should be represented by a top-level dlzstsextends eithelFrame or JPanel

The important components — components that nebd teferenced during the lifetime of the GUI — dbdae
defined asnstance variablespositioned as instance variables of the top-lelass.

The GUI constructor should do the majority of thdl®uilding.

Define other methods as needed to manipulate tHefil@i client code, in traditional OOP style.

The main method is not normally a member of the @ll$s. Instead, provide a static methdai#dGUI() or
something similar — that can be called from themuaiother method in the client.

Event listeners are best defined as inner clagssguently, anonymous classes) of the top-levedsclarhis
arrangement simplifies access to object state leztwinsely related objects.

If the top-level class extends JFrame, then moi#d lbade is in the constructor, and the buildGUi@thod
only needs to call the constructor. If the topeleslass extends JPanel, then the constructorkarilgs the
JPanel, and the buildGUI() method must finish tatils involving the application’s JFrame.

COMP 585 Noteset #1 30

Version 2

Here’s a variation that uses a top-level classdiknds JFrame, with an inner class that extedsel.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class CounterFrame extends JFrame {

class CounterPanel extends JPanel {
JTextField tf;
JButton btnStart,btnStop,btnReset,btnQuit;

public CounterPanel() {
tf = new JTextField(5);
tf.setText("0");
this.add(tf);

btnStart = new JButton("Start");
this.add(btnStart);

btnStop = new JButton("Stop");
this.add(btnStop);

btnReset = new JButton("Reset");
this.add(btnReset);

btnQuit = new JButton("Quit");
this.add(btnQuit);

}

public CounterFrame(String caption) {
super(caption);
CounterPanel panel = new CounterPanel();
this.setContentPane(panel);

}

public static void createGUI() {
CounterFrame frame = new CounterFrame("Counter");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLO
frame.setSize(300,200);
frame.setVisible(true);

}

public class Counter2 {
public static void main(String[] args) {
CounterFrame.createGUI();
}

}

Improvements

SE);

» Details are encapsulated into CounterFrame and t€dRemnel classes, hidden from client.
* Widgets are instance variables of CounterPane$ ctasthey can be referred to later by event hasidle

* Frame is set to exit on close.

COMP 585 Noteset #1 31

Events and Listeners
Counter Version 3 should make the buttons do sangthhen clicked. Before we try to implement Carrersion 3,
we need to look at events, listeners, and adapters.

Event-Driven Program Flow of Control

Imagine a generic software application for whicé tiser interface details have been abstracted awémat is left is
essentially a series of services that the softwemeds ready to perform for the user when requestéeé user interface
simply provides the request for the specific sexvic

If a GUI is not available, a standard undergradagigroach to receiving user requests from the iapdtdispatching the
request to the correct software service is a condrtiae interface (CLI) or command-line prompt. its1 simplest form,

it is easily implemented as an input statemenéeteive the request from the keyboard input, afsg-&adder to interpret
the choice represented by the request, then &ocidié function or method that implements the retpeservice.

Command-Line Prompt
Event = User Command Choice, Event Dispatch Udient Control

main() {
while (true) {
prompt();
command = input();
if (command == commandl) {
commandl1Handler();
else if (command == command?2) {
command2Handler();
}
else if (command == “quit”) {
break;
}
}
}

COMP 585 Noteset #1 32

How does this change with a GUI?

Input is now expanded to include the mouse.

Rather than typing textual responses to promptst ead users expect to be able to point and dhtéracting with
standardized GUI elements: buttons, check boxesll ¥ars, menus, minimize/maximize/close windamirols, etc.

In the examples above, the building of the elem#rasmake up the visual hierarchy uses standandtated and OOP
programming techniques. What's missing is the fioms or methods that represent the services pedviy the
software application. How are these to be conetttéhe code that builds the GUI? Clearly thecfioms are not
meant to be invoked during app initialization whithe GUI is being built. They are intended to b#dched” to a GUI
element such as a button, and invoked at runtimamijcally at the time when the user points andkslibe button.

Java handles this kind of interaction by definingrts and listeners. Events are created by themsysutomatically
when the user interacts with the GUI: mouse evavittlow events, component events, key events, lagteners are
special program blocks that can be bound or regidteith a GUI element and activated when the aaases that
element to fire an event.

Event = User action with mouse or keyboard, Evasp&tch UndeBystemControl

main() {
buildGui();
button #1 <-> commandlHandler()
button #2 <-> command2Handler()
}

void commandl1Handler() {
I/l here when button #1 is pressed

}

void command2Handler() {
/I here when text entered in text field 3

User provides definitions or implementations ofcglemethods called event handlers. User doegpitally have any
control over when they are invoked. Invocationges automatically when the user of the applicatiggers the
relevant event.

COMP 585 Noteset #1 33

Events in Java

ActionEvent and ActionListener for Handling Button Clicks
» Event: ActionEvent
» Interface: ActionListener
» Action: clicking on a Button with the mouse, piiegs<return> while cursor is in a TextField, others

The ActionEvent is a useful general-purpose orfadtevent for common GUI operations. Correspogdinthe
ActionEvent is the ActionListener interface. Théeirface describes in outline form what an objewb wesponds to an
ActionEvent should look like. Here’s the interface

interface ActionEvent {
public void actionPerformed(ActionEvent e);
}

Steps During Instantiation of GUI
» Instantiate JButton object as usual.
* New: instantiate some object that implements tbgofListener interface.
 New: attach (“register”) the listener to the batttsing the addActionListener() method.

Steps During Operation of GUI

User uses the mouse to click on the Button

« JVM instantiates an ActionEvent object which stardsrmation about the action. This happens whetihere
are any listeners for the event or not.

» JVM checks the Button to see if any ActionListeriease been registered with the Button.

» If so, the actionPerformed() method of each Actistener is called. The ActionEvent object is pddsethis
method as a parameter. The method may examirevérg object if it needs to.

* If no listeners have been registered with the uttiee ActionEvent object is discarded.

There are many other types of event and listefae next most important are
* MouseEvent and MouseListener
* MouseEvent and MouseMotionListener (there is no $éddiotionEvent)
* WindowEvent and WindowListener

For future reference, it will be interesting to $mev other plaforms resolve the same problem. eixample, the .NET
platform uses delegates rather than listenersedagds are similar to function pointers that aapsulated as an object,
attached to a GUI element, and invoked dynamically later time.

An alternative would be to solve the custom compoehavior problem purely by subclassing:

class MyButton extends JButton {
public void whenClicked() {

}

/I this method overrides the default method

}

Java GUIs have chosen not to take this approaukrelstingly, .NET provides a similar mechanismadidition to the
delegate approach mentioned earlier.

COMP 585 Noteset #1 34

