
Quick Review of Digital Logic 

Combinational Logic 

• Circuits such as simple gates up through more complex mux and demux circuits fall into this 

category. 

• Output is purely a function of input, there is no stored state to influence output. 

• This is the basis of circuits within the ALU that perform arithmetic calculations and within the 

control region of the CPU to route data from point to point 

Sequential Logic 

• Output is a function not only of input, but also of previous state. 

• This is the basis of semiconductor memory. 

• Without the ability for a circuit to remember previous state, there is no memory or storage. 

SR Latch 

• Simplest sequential circuit. 

• Conceptually, a latch represents a circuit that stores a single bit. 

• For the sake of visualization, can be built from cross-coupled NAND or NOR gates, even though 

as a practical matter this might not be how they are actually implemented. 

NAND Gate Truth Table 

 

Figure from http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/nand.html 

NOR Gate Truth Table 

 

Figure taken from http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/nor.html 



 

Latches and Flip Flops 

A single NAND or NOR gate are combinational circuits. But a simple design of two gates that have been 

cross-coupled changes everything, giving rise to state and storage. Latches and flip flops are the simplest 

forms of sequential circuit. A single latch or flip flop represents storage for a single bit. A latch is 

generally defined as a level triggered circuit, while flip flops are edge triggered. 

 

Cross-Coupled NOR Gates:  SR Latch 

 

Figure taken from http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/norlatch.html 

• Normal operation is for both S and R to be held low (0). 

• When S becomes high (1) then returns to low (0) (while R remains low), this triggers the “set” 

operation, and the Q output becomes high (1). The set operation stores a 1 into Q. 

• When R becomes high then returns to low (while S remains low), this triggers the “reset” 

operation, and the Q output becomes low (0). The reset operation stores a 0 into Q. 

• S and R should never become high at the same time. Additional circuitry is required to enforce 

this. 

Cross-Coupled NAND Gates: S-bar R-bar Latch 

 

Figure taken from http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/nandlatch.html 

The difference in this circuit from the previous one is that S and R are normally high and are active low. 

Also note the relative positions of Q and Q-bar are reversed. 



  



Types of RAM 

Static RAM:  SRAM 

• Each bit is a latch or flip flop. 

• Multiple transistors per bit. 

• Each bit takes up more space on chip. 

• As long as power is applied to chip, bit retains its value, no refresh circuitry required. 

• Fast switching (time required to read or write the bit). 

• Used when speed is more important than cost:  cache 

 

Dynamic RAM: DRAM 

• Different technology based on capacitor holding charge to represent bit value 

• Not  based on latch or flip flop circuits 

• Takes up less space, more bits can be packed onto a chip, so cheaper 

• Capacitor loses charge over time so it must be periodically refreshed indefinitely, even when 

power is applied. 

• Switching time is longer, so it’s slower. 

• Used when large volumes at a low price are more important than speed:  main memory RAM. 

 

Figure taken from http://www.pcmag.com/encyclopedia/term/42192/dynamic-ram 

 

  



Synchronous DRAM: SDRAM 

• Operation is synchronized with a clock signal 

• Allows higher data transfer rates between RAM and CPU than asynchronous DRAM 

 

Double Data Rate SDRAM:  DDR SDRAM (DDR1, DDR2, DDR3, DDR4 Generations) 

• Data is transferred on both the rising and falling edge of the clock (double pumping) 

• Doubles the data transfer rate without changing the clock frequency 

• See https://en.wikipedia.org/wiki/DDR_SDRAM 

• Example:  64 bit data bus, 100 MHz clock implies 1600 MB/sec transfer rate 

  



RAM Logical View Versus Physical DRAM Packaging 

A high-level logical view of the function of RAM treats RAM as a single large chip with address and data 

busses, plus a couple of control signals like the R/W line. A typical figure is the following: 

       

Figures taken from 

http://www.allsyllabus.com/aj/note/ECE/Digital_System_Design_Using_VHDL/Unit8/index.php 

The chip requires n address lines to pick one word out of a total of 2n words. Each word is m bits, so 

there are m data lines for both read and write operations. The control signals are for chip select (CS), 

output enable (OE) and write enable (WE). The truth table shows that normal operation is for chip select 

to be enabled, then either output enable becomes active for read, or write enable becomes active for 

write. 

DRAM Chip Architecture 

Actual RAM (both SRAM and DRAM) as installed in a typical PC looks quite different internally. 

Commercial DRAM chips are grouped together into DIMMs (dual inline memory modules) for 

installation onto typical motherboards. Let’s spell out some of the details that show how a high level 

view of RAM can be built up from individual DRAM chips and DIMMs. 

  



A single DRAM chip provides storage in the form of an array, where a small group of bits (usually 4 to 8) 

is uniquely addressed by a row and column. In the Stallings book, figure 5.3 shows the schematic for a 

typical 16 Mbit DRAM chip (emphasis on megabit, not megabyte). 

 

The notation “2048 X 2048 X 4” means “2048 rows, 2048 columns, 4 bits per address.” Do the math to 

confirm that this adds up to 16 megabits: 

2048 X 2048 X 4 = 211 X 211 X 22 = 224 = 16 M 

Another way to look at this chip: it uses a 22-bit address (11 bit row address and 11 bit column address) 

to select 4 bits for either read or write. Pinout looks like this (also from Stallings): 

 

Note that there are 4 data pins (D0 – D3) but only 11 address pins (A0 – A10), which seems to be only 

half of what is needed. But note the row address select (RAS) and column address select (CAS) pins. The 

RAS/CAS pin values determine the meaning of the values currently on the address lines. Using these 

signals, the 22-bit address is transmitted across the 11-bit address bus in two parts: the row address in 



one step (with the RAS signal active) and the column address in the next step (with the CAS signal 

active).  

Banks 

The chip described above consists of a single 2048 X 2048 X 4 bank. Larger DRAM chips take the above 

design and replicate it to create 4 or more identical banks within the same chip. A chip with 4 banks will 

have two additional signals BA0 and BA1 for bank address. The 2-bit bank address then becomes part of 

the overall RAM address. 

The accompanying schematic explains the internal architecture of a larger 4-bank chip, a 128 megabit 

DRAM. The chip comes in 3 configurations (all with 4 banks): 

• 32 M X 4:  each bank is 4096 X 2048 X 4 (4096 X 2048 X 4 X 4 = 128 megabits) 

• 16 M X 8: each bank is 4096 X 1024 X 8 (4096 X 1024 X 8 X 4 = 128 megabits) 

• 8 M X 16: each bank is 4096 X 512 X 16 (4096 X 512 X 16 X 4 = 128 megabits) 

Bank address and row address is the same in all configurations 

• Bank address: 2 bits (22 = 4) 

• Row address:  12 bits (212 = 4096).  

Column address depends on the configuration 

• 32 M X 4:  2048 columns = 11 bit column address 

• 16 M X 8:  1024 columns = 10 bit column address 

• 8 M X 16:  512 columns = 9 bit column address 

Number of data bits selected is indicated by the 3rd dimension for that configuration 

• 32 M X 4:  4 bits per address 

• 16 M X 8:  8 bits per address 

• 8 M X 16:  16 bits per address 

The chip will need to provide the number data pins that matches the number of data bits per address. 

Depending on how the bank address bits are used, the banks can be used to store data sequentially or 

interleaved. If the bank address bits are MSBs (most significant bits), sequentially addressed data will be 

stored sequentially across the banks, filling bank 0, then moving on to bank 1, etc. If the bank address 

bits are used as LSBs (least significant bits), sequentially address data will be interleaved across the 

banks, with one address in bank 0, the next address in bank 1, etc. The chip does not enforce one 

addressing approach over the other, the user of the chip can build a circuit around the chip to use one 

or the other. 

So far, the design hierarchy of memory looks like this: 

Flip-flop (1 bit) � DRAM bank (e.g., 2048 X 2048 X 4 bits) � DRAM chip (with 4 to 8 banks) 

 

  



DIMM:  Dual Inline Memory Module 

Organization of storage within a single DRAM chip is based on multiple banks, each with the bits for that 

bank selected by row and column addresses. In the past, DRAM chips might have been plugged into IC 

sockets directly on the motherboard. But today, it’s usually provided to the end user in the form of 

DIMMs (dual inline memory module). The DIMM is a separate small card that plugs into slots on the 

motherboard. The individual DRAM chips are attached on the sides of the DIMM, and the DIMM has 

connection pins on one edge and snaps into place in a specially designed socket on the motherboard. 

Single Inline Memory Modules (SIMMs) have DRAM chips mounted on one side of the card, DIMMs have 

DRAM chips on two sides.  

 

 

Figure from https://docs.oracle.com/cd/E19469-01/819-4359-19/figures/CH3-maint-61.jpg 

DIMMs provide the interface between the small set of bits provided by each DRAM chip (4 to 8 bits) and 

the data bus, which is usually 64 bits currently. For example, if a DRAM chip provides 8 bits per read, but 

the motherboard has a 64-bit data bus, then ideally we should install 8 DRAM chips together to act as a 

single larger “virtual” DRAM chip with 8 X 8 = 64 bits for each read or write. Now the capacity of the 

DRAM chips matches the capacity of the data bus. If we send the same address to all chips 

simultaneously and access their selected bits simultaneously, then we have effectively created a larger 

storage word spread across multiple DRAM chips, and we can take advantage of the wide data path 

provided by the data bus. There are many ways to combine these individual DRAM chips to provide a 

complete logical memory function to our computer system, but one of the most common today is called 

the DIMM. Previously, DRAM was supplied on a simpler module called a SIMM (single inline memory 

module).  



A more close up figure: 

 

Figure from https://docs.oracle.com/cd/E19127-01/ultra27.ws/820-6776/images/24051.gif 

Note the notch on the bottom of the DIMM. One or more notches imply different DIMM generations 

and characteristics that are not forward or backward compatible with other kinds of DIMM. To add 

DIMMs to a motherboard requires careful research of what kind of DIMM is compatible with that 

motherboard. Some motherboards have requirements that multiple DIMMS be installed in specific 

capacity combinations. For example, some older motherboards with 4 DIMM slots required that all 

DIMM slots be filled, you could not install a DIMM into a couple of slots and leave the other slots empty. 

Ranks 

The next level in the hierarchy of memory storage is the rank. A rank consists of some subset of the 

DRAM chips attached to the DIMM. Most commonly these days, all the DRAM chips on one side of the 

DIMM form a rank. Rank 0 is on one side of the DIMM, and rank 1 is on the other. A typical arrangement 

is for 8 DRAM chips to form one rank. Two ranks imply 16 chips per DIMM. 

Hierarchy:  flip-flop � bank �chip �rank �DIMM 

DIMM Capacity 

Using the DIMM design with 8 chips per side or 16 chips total, the capacity of a single DIMM in 

megabytes as a function of DRAM capacity in megabits can be calculated as follows: 

DRAM Size DIMM Capacity 

128 Mb 227 X 24 = 231 bits; 231/23 bytes = 228 bytes = 28 * 220 = 256 MB 

256 Mb 512 MB 

512 Mb 1 GB 

 

ECC 

Error correcting code DRAM will typically add a 9th chip for SEC/DED codes for 8 data chips. 

Exercise:  how many SEC bits are needed for 64 data bits? 

 

 

  



Error Detecting and Correcting Codes 

• Imagine a 4-bit data item 1001. 

• Store it into RAM or transmit it along a communication channel. 

• Suppose during storage or transmission the data is corrupted in one bit and becomes 1011. 

• What happens on read or receive? 

 

Parity Codes 

• We make the assumption that no more than one bit can change during storage or transmission. 

• When the data is first examined, we calculate a parity bit, so the total number of bits becomes 5 

o 4 data bits 

o 1 parity bit 

• The parity bit is redundant information that uses extra resources to maintain, but it is worth it 

because it gives us the ability to detect a single-bit error. 

o Original Data: 1001 

o Common parity scheme: parity bit is 

o 0 if there are an even # of 1s in the data 

o 1 if there are an odd # of 1s in the data 

o In this scheme, the total # of 1s for the data + parity bit will always be even. 

• We can now store or transmit all 5 bits. 

• When the data is read or received, we recalculate the parity bit. 

• If the parity bits match, there are two possibilities: 

o There are no errors. 

o There are two or more errors. 

• The parity bit only works if we assume a maximum of one error, so in this case we will go 

forward assuming the data bits are correct. 

• If the parity bits don’t match, there is one possibility: 

o There are one or more errors. 

• In this scheme, we can’t correct the error, but simply detecting the error is better than not 

knowing there was an error at all. 

Checksum 

• A generalization of the parity bit is the checksum. 

• A checksum is a function of the data that produces a new value that then accompanies the 

original data. 

• Ci-j = f(dk-l):  some number of check bits are calculated as a function of the data bits. 

• When the data and originally calculated checksum are received, the checksum is recalculated. 

• If the two checksums match, we have higher confidence that the received data has not been 

modified or corrupted. 

• The checksum itself could be corrupted, but since the checksum is small compared to the data, 

any errors are more likely to be within the data. 

 



Hamming Codes 

• Richard Hamming invented a coding method in the 1950s to detect 1 or 2 errors and correct 1 

error. It relies on the concept of code words and distances. 

• A code word is a valid set of bits for the coding scheme. It contains a mix of data and checksum 

bits. 

• An arbitrary bit pattern may or may not be a valid code word. 

• Code distance = number of bits that must be modified (flipped) to convert one bit pattern into a 

second bit pattern. 

• For error detection, we require any two valid code words to be at least distance two apart: a 

single bit error must not convert one valid code word into another code word. 

• For error correction, we further require that valid code words be at least distance three apart: a 

single bit error will move to a bit pattern that is distance one from the original valid code word. 

When the error code is encountered later, there is only one valid code word that is distance one 

away, so the error can be corrected. 

• Some useful abbreviations 

o SED: single error detection code 

o DED: double error detection code 

o SEC:  single error correction code 

 

SEC: How Many Bits Are Needed? 

Let’s go through the SEC (single error correction) Hamming code algorithm. Before looking at the 

detailed algorithm, we have to figure out the minimum number of extra bits would be required to 

provide error correction capability. We have already seen that a single parity bit is not enough. 

• Suppose we have n data bits and will add k check bits. 

• We plan to use the k check bits to distinguish between all the possible error conditions. 

• The number of bit patterns in k bits is 2k. 

• We reserve 1 bit pattern to indicate that there is no error 

• This leaves 2k – 1 patterns for all error conditions 

• If we have n data bits and k check bits, one complete word is n+k bits. 

• How many single bit errors can there be? 

• Each bit could be in error, so there are n+k possible errors. 

• So we need the check bit patterns to be at least as big as the number of possible errors: 

• 2k – 1 >= n+k 

Here are a few representative values for n and k that satisfy this relation 

n k n+k 2k – 1 2k – 1 >= n+k ? 

8 2 10 22 – 1 = 3 3 >= 10 ? No 

8 3 11 23 – 1 = 7 7 >= 11 ? No 

8 4 12 24 – 1 = 15 15 >= 12 ? Yes 

 



Now that we know how many bits we need, we can work out the details for the (8,4) SEC Hamming 

code. 

• Number the 12 bits from 1 to 12 going from right to left. 

• The 4 check bits are associated with the positions that represent powers of 2: 1, 2, 4, and 8. 

• The 8 data bits are the rest: 3, 5, 6, 7, 9, 10, 11, 12. 

 12 11 10 9 8 7 6 5 4 3 2 1 

Data D8 D7 D6 D5  D4 D3 D2  D1   

Check     C8    C4  C2 C1 

 

We’ll see why it’s useful to put bits in this order shortly. 

Now take an 8-bit data item – 3916 = 001110012 – and place into this table. 

 12 11 10 9 8 7 6 5 4 3 2 1 

Bits 0 0 1 1  1 0 0  1   

Data D8 D7 D6 D5  D4 D3 D2  D1   

Check     C8    C4  C2 C1 

 

How to Calculate Check Bits 

• Each check bit will be a function of a subset of the data bits. 

• We will carefully pick which data bits are checked by each check bit to guarantee that each data 

bit is checked by a unique combo of check bits. 

• Each check bit occupies a position that represents a power of 2:  1=20, 2=21, 4=22, 8=23. 

• Each data bit occupies the other positions 3, 5, 6, 7, 9, 10, 11, 12. 

• For each of these data bit positions, express them as sums of powers of 2: 
•
 3 = 00112 = 21 + 20 (bit 3 = data bit 1) 

•
 5 = 01012 = 22 + 20 (bit 5 = data bit 2) 

•
 6 = 01102 = 22 + 21 (bit 6 = data bit 3) 

•
 7 = 01112 = 22 + 21 + 20 (bit 7 = data bit 4) 

•
 9 = 10012 = 23 + 20 (bit 9 = data bit 5) 

•
 10 = 10102 = 23 + 21 (bit 10 = data bit 6) 

•
 11 = 10112 = 23 + 21 + 20 (bit 11 = data bit 7) 

•
 12 = 11002 = 23 + 22 (bit 12 = data bit 8) 

Now reverse this list to show for each power of two, which data bit positions include it in their sum: 

• 20:  check bit 1 checks data bits 1, 2, 4, 5, 7 

• 21:  check bit 2 checks data bits 1, 3, 4, 6, 7 

• 22: check bit 4 checks data bits 2, 3, 4, 8 

• 23: check bit 8 checks data bits 5, 6, 7, 8 

  



The check bits are calculated as the XOR (exclusive OR) of the selected data bits. 

We’re working on data item 3916 = 001110012. 

 12 11 10 9 8 7 6 5 4 3 2 1 

Bits 0 0 1 1  1 0 0  1   

Data D8 D7 D6 D5  D4 D3 D2  D1   

Check     C8    C4  C2 C1 

 

Now calculate the check bits: 

• C1 = D1 ⊕ D2 ⊕ D4 ⊕ D5 ⊕ D7 =  1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1 

• C2 = D1 ⊕ D3 ⊕ D4 ⊕ D6 ⊕ D7 =  1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1 

• C4 = D2 ⊕ D3 ⊕ D4 ⊕ D8 =  0 ⊕ 0 ⊕ 1 ⊕ 0 = 1 

• C8 = D5 ⊕ D6 ⊕ D7 ⊕ D8 =  1 ⊕ 1 ⊕ 0 ⊕ 0 = 0 

Inserting the check bits into the code word gives: 

 12 11 10 9 8 7 6 5 4 3 2 1 

Bits 0 0 1 1 0 1 0 0 1 1 1 1 

Data D8 D7 D6 D5  D4 D3 D2  D1   

Check     C8    C4  C2 C1 

 

The completed code word is now the 12 bit value 0011010011112 = 34F16 

 

  



Injecting an Error and Correcting It 

To demonstrate how an SEC Hamming code works, let’s inject an error into a data bit. Let’s say D3 (data 

bit 3, bit 6 in the code word counting from the right) which was originally 0, was flipped during storage 

to 1. The code word started off as  

0011010011112 = 34F16 

but is now 

0011011011112 = 36F16 

Looking at the code word layout with the new erroneous code word we have: 

 12 11 10 9 8 7 6 5 4 3 2 1 

Bits 0 0 1 1 0 1 1 0 1 1 1 1 

Data D8 D7 D6 D5  D4 D3 D2  D1   

Check     C8    C4  C2 C1 

 

First we recalculate the Check Bits 

• C1 = D1 ⊕ D2 ⊕ D4 ⊕ D5 ⊕ D7 =  1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0  = 1 

• C2 = D1 ⊕ D3 ⊕ D4 ⊕ D6 ⊕ D7 =  1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 0  

• C4 = D2 ⊕ D3 ⊕ D4 ⊕ D8 =  0 ⊕ 1 ⊕ 1 ⊕ 0  = 0  

• C8 = D5 ⊕ D6 ⊕ D7 ⊕ D8 =  1 ⊕ 1 ⊕ 0 ⊕ 0  = 0 

D3 is in position 6 and is checked only by C2 and C4, so only those check bits change 

 12 11 10 9 8 7 6 5 4 3 2 1 

Bits 0 0 1 1 0 1 1 0 1 1 1 1 

Data D8 D7 D6 D5  D4 D3 D2  D1   

Check     C8    C4  C2 C1 

Recalc     0    0  0 1 

 

We now take the XOR of the old check bits and the new check bits, which results in a 0 if the bit hasn’t 

changed, or a 1 if it has. 

 12 11 10 9 8 7 6 5 4 3 2 1 

Bits 0 0 1 1 0 1 1 0 1 1 1 1 

Data D8 D7 D6 D5  D4 D3 D2  D1   

Check     C8    C4  C2 C1 

Recalc     0    0  0 1 

Old 

XOR 

New 

     

0 

    

1 

  

1 

 

0 

 



Note that the bits that are different form the number 01102 = 6, which is the position of the bit in error. 

As explained above, the reason this works is that 

• Each check bit represents a power of 2 

• Each check bit checks those bit positions for positions that have that power of 2 in their sum. 

• Each data bit is checked by a unique combination of check bits. If that data bit is wrong, only the 

check bits that include that data bit will be different. And that unique combination of check bits 

treated as powers of two will add up to the position of the bit that is in error. 

Note that if a check bit itself is in error, the code also works and will indicate a bad check bit in positions 

1, 2, 4, or 8. But since check bits are discarded after the data bits are read, we are only interested in 

correcting data bits, a check bit in error can be effectively ignored. 

Remember at the beginning of this discussion, we concluded that 4 check bits were needed to check 8 

data bits. Now it should be clear why. Focusing on the 4 check bits and their possible values, we have: 

  



Old Check 

XOR 

New Check 

 

Meaning 

0000 All bits correct 

0001 Bit 1 incorrect (check bit, ignore it) 

0010 Bit 2 incorrect (check bit, ignore it) 

0011 Bit 3 incorrect (data bit 1, correct it) 

0100 Bit 4 incorrect (check bit, ignore it) 

0101 Bit 5 incorrect (data bit 2, correct it) 

0110 Bit 6 incorrect (data bit 3, correct it) 

0111 Bit 7 incorrect (data bit 4, correct it) 

1000 Bit 8 incorrect (check bit ignore it) 

1001 Bit 9 incorrect (data bit 5, correct it) 

1010 Bit 10 incorrect (data bit 6, correct it) 

1011 Bit 11 incorrect (data bit 7, correct it) 

1100 Bit 12 incorrect (data bit 8, correct it) 

 

• In the left column, you can see we can generate 2k = 24 = 16 patterns with our k=4 check bits, 

even though in this case we only need 13 of them. 

• In the right column, you can see we need at least n+k+1 = 8+4+1 = 13 different messages 

o 1 message for each possible bit error 

o 1 message for no error. 

• So 2k >= n + k + 1, or 2k – 1 >= n + k 

• From this we concluded that the SEC for n=8 data bits requires k=4 check bits. 

  



SEC/DED:  single error correction plus double error detection 

By adding one additional parity bit to the SEC scheme, we get double error detection. Note that two 

errors can be detected but not corrected. 

 

Actual RAM In Your PC 

The letters ECC for error correcting code appear on RAM chips that implement a scheme such as 

Hamming SEC/DED. 

  



Exercise: Create 12 bit Hamming Code Word from 8 bit Data Word 

Data word in hex (2 digits): ___________________ 

Fill in the “Data” and “Check” rows with the positions of those bits, and fill in the “Value” row with the 

data word expanded into binary and placed in the positions reserved for data bits. For now, enter 0s for 

the check bit positions. 

Value             

Data             

Check             

Bits 12 11 10 9 8 7 6 5 4 3 2 1 

 

At this point, note the resulting intermediate code word in hex (3 digits): ________________ 

 

In the first row, indicate which data bit position is represented by each code word position. Then for 

each check bit, place a check mark ✓ in the column if the check bit should check that data bit. 

 12 (1100) 

= 8 

11 (1011) 

= 7 

10 (1010) 

= 6 

9 (1001) 

= 5 

7 (0111) 

= 4 

6 (0110) 

= 3 

5 (0101) 

= 2 

3 (0011) 

= 1 

C1         

C2         

C4         

C8         

 

Calculate the Check Bits for the Code Word 

• XOR of all bits, or equivalently, calculate the bit to enforce even parity 

Check 

Bit 

Value 

C1  

C2  

C4  

C8  

 

Insert check bits back into code word along with data bits. 

Value             

Data             

Check             

Bits 12 11 10 9 8 7 6 5 4 3 2 1 

 

Note the final code word in hex: _____________________________________ 

  



Exercise: Recover 8 data bits from 12 bit Code Word with Single Bit Error 

Code word with single data bit error in hex (3 digits): ___________________ 

Completed table from previous worksheet showing how to calculate check bits from data bits: 

 12 (1100) 

= 8 

11 (1011) 

= 7 

10 (1010) 

= 6 

9 (1001) 

= 5 

7 (0111) 

= 4 
6 (0110) 

= 3 

5 (0101) 

= 2 

3 (0011) 

= 1 

C1  ✓  ✓ ✓  ✓ ✓ 

C2  ✓ ✓  ✓ ✓  ✓ 

C4 ✓    ✓ ✓ ✓  

C8 ✓ ✓ ✓ ✓     

 

• Fill in the “Values” row with the binary bits 

• Copy the current check bits to “Check #1” row 

• Recalculate the check bits from the data bits in “Check #2” row 

• Form the XOR of each pair of bits from “Check #1” and “Check #2” row in “XOR” row 

 12 11 10 9 8 7 6 5 4 3 2 1 

Values             

Data 8: 7: 6: 5:  4: 3: 2:  1:   

Check 

#1 

    8:    4:  2: 1: 

Check 

#2 

    8:    4:  2: 1: 

XOR     8:    4:  2: 1: 

 

Table for recalculating check bits for “Check #2” row. 

Check 

Bit 

Value 

C1  

C2  

C4  

C8  

 

Code Word Bit in error: ____________ 

Data Bit in error: ___________ 

Corrected 8 bit data in hex (2 digits): ____________ 

 


