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Abstract—By integrating a genetic algorithm (GA) with a non-
linear interior point method (IPM), a novel hybrid method for the
optimal reactive power flow (ORPF) problem is proposed in this
paper. The proposed method can be mainly divided into two parts.
The first part is to solve the ORPF with the IPM by relaxing the dis-
crete variables. The second part is to decompose the original ORPF
into two sub-problems: continuous optimization and discrete opti-
mization. The GA is used to solve the discrete optimization with
the continuous variables being fixed, whereas the IPM solves the
continuous optimization with the discrete variables being constant.
The optimal solution can be obtained by solving the two sub-prob-
lems alternately. A dynamic adjustment strategy is also proposed
to make the GA and the IPM to complement each other and to
enhance the efficiency of the hybrid proposed method. Numerical
simulations on the IEEE 30-bus, IEEE 118-bus and Chongqing
161-bus test systems illustrate that the proposed hybrid method is
efficient for the ORPF problem.

Index Terms—Genetic algorithm (GA), interior point method
(IPM), nonlinear programming, optimal reactive power flow
(ORPF).

I. INTRODUCTION

THE MAIN purpose of optimal reactive power flow (ORPF)
is to minimize the total power losses of the network while

maintaining the voltage profile of the network in an acceptable
range. The control variables of the study include voltages of
generators, tap ratios of transformers, and reactive power gen-
eration of var sources (banks of capacitors and reactors). Since
the control variables include both discrete variables (var sources
and transformer tap ratios) and continuous variables (generator
voltages), the ORPF is inherently a mixed-integer nonlinear pro-
gramming (MINLP) problem [1].

Genetic algorithm (GA) is one kind of global optimization
techniques with the advantage of dealing with the integer vari-
ables. Interior point method (IPM) offers fast convergence to
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solve large-scale nonlinear program problem. Both of them have
been successfully applied to solving ORPF problem [2]–[7], but
the difficulty of IPM in dealing with discrete variables and the
tardiness of GA in searching optimal solution virtually remain
unsolved.

The GA is a general evolution concept-based methodology,
and its developing trend is to be combined with other algo-
rithms [8], [9]. In [8], a combined methodology is presented,
which consists of a successive linear programming (SLP) and a
simple genetic algorithm (SGA). First, an initial solution is ob-
tained by relaxing the discrete nature of all variables, and then a
mixed linear integer problem is formulated and solved using the
SGA and the SLP. The SGA deals with the optimization of dis-
crete variables. The SLP works as a support technique for SGA,
which provides the final system operating state by adjusting the
existing continuous variables and finding the fitness function for
each individual of the genetic algorithm population. A hybrid
formulation using a GA combined with an IPM (HGI) has been
reported in [9]. Similarly, the IPM is embedded in the process
of GA to replace the load flow calculation and is employed to
find the fitness for each candidate solution. Although the hybrid
method is more efficient than the SGA, the execution time is
still considerable. Indeed, it is unnecessary to use the IPM to
find the fitness for each candidate solution of the GA. Besides,
the randomicity of discrete variables may make the final system
operating state become infeasible, no matter what the contin-
uous variables are. In this case, the IPM is non-convergent. In
order to integrate the GA with the IPM in a more effective way,
a novel hybrid algorithm is therefore proposed in this paper.

This paper is organized as follows. A brief review of the
ORPF problem formulation, the IPM, and the GA methodology
is given in Section II–IV, respectively. In Section V, the novel
hybrid method integrating the GA and the IPM (NHGI) is pro-
posed, and a dynamic adjustment strategy is also introduced to
improve the efficiency of the proposed method. In Section VI,
the numerical simulation results of the NHGI on IEEE 30-bus,
IEEE 118-bus, and Chongqing 161-bus test systems are shown
and compared with that of HGI in [9]. Finally, Section VII con-
cludes this paper.

II. PROBLEM FORMULATION

The formulation of the ORPF problem can be expressed as
the following MINLP problem:

s.t.

(1)
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where the objective function is the total active power losses;
is the nonlinear vectors function representing power flow

equations; is the vector of decision variables in-
cluding the vector of state variables (voltage magnitudes and
angles of the load buses and injected reactive powers of the gen-
erators), the vector of continuous control variables (gener-
ator voltages magnitude ), and the vector of discrete control
variables (reactive power of the shunt capacitor/reactor
and transformer tap ratios ); and and are the vectors
modeling operational limits on state and control variables.

III. INTERIOR POINT METHOD

The ORPF problem in (1) can be solved by a nonlinear IPM
based on a logarithmic barrier primal-dual algorithm defined
in [5] and [6]. In this method, all the decision variables, in
(1), are first assumed to be continuous. Besides the slack vari-
ables, the Lagrange multipliers are introduced to deal with the
inequality and equality constraints, and the logarithmic barrier
functions are used to guarantee the non-negativity conditions of
the slack variables. The ORPF problem can be transformed into
the sub-problem of the following Lagrange function without the
constraints:

(2)

where and are the slack variables ( , ); , , and
are the Lagrange multipliers ( , ); and is the

barrier parameter .
Based on the Karush–Kuhn–Tucker (KKT) first-order condi-

tions of the sub-problem, a set of nonlinear algebraic equations
is formed and then solved by the Newton–Raphson algorithm.
The iteration procedure of the IPM is stopped when the mis-
matches of KKT conditions are sufficiently small or less than
the specified tolerance as shown in the following:

(3)

(4)

(5)

(6)

(7)

In the primal-dual theory, , , and are the primal variables;
, , and are the dual variables; (3) is the dual feasible con-

dition; (4)–(6) are the primal feasible conditions; and (7) is the
complementary slackness condition. Therefore, the optimal so-
lution fulfills the stopping criteria in (3)–(7), while the feasible
solution satisfies the stopping criteria in (4)–(6).

IV. GENETIC ALGORITHM

Genetic algorithm (GA) is an optimization algorithm based
on the mechanics of natural selection and genetics. The ap-
proach is based on Darwin’s survival of the fittest hypothesis. In
the GA, candidate solutions to the given problem are analogous

to individuals in a population. Each individual is encoded as
a string, called chromosome. New candidate solutions are pro-
duced from parent chromosomes by the crossover operator. The
mutation operator is then applied to the population. The quality
of each individual is evaluated and rated by the so-called fitness
function. Similar to the natural selection mechanism in the bi-
ological system, the fitter individuals have more chance to pass
on information to the next generation. When a chromosome with
the desired fitness is formed, it will be taken as the optimal solu-
tion, and the optimization process is terminated. Otherwise, the
process is repeated until the maximum number of generations is
reached and the fittest chromosome so far formed is taken to be
the optimal solution. In this paper, the simple genetic algorithm
(SGA) in [3] is implemented with some modifications. The dif-
ferent components of GA are described as follows.

1) Chromosomes: Since the transformer tap ratios and
shunt capacitor/reactor capacitors are all discrete con-
trol variables, they can be encoded as integer variables.
When a discrete control variable is expressed by (8),
the integer-encoded gene of the control variable can be
represented by the integer . By this encoding method,
the length of the chromosome is equal to the number
of control variables, and each gene represents a control
parameter of ORPF

(8)

where and are the lower limit and the step-
size of the discrete control variable, respectively.
is the maximum number of control steps for the corre-
sponding variable.

2) Fitness Function: The objective of ORPF is to minimize
the total active power loss. GA is designed to maximize
the fitness, which is a measure of the quality of each can-
didate solution. Therefore, a transformation is needed to
convert the objective of ORPF to an appropriate fitness
function. The control variable constraints of ORPF are
automatically satisfied by the encoding scheme, while
the state variable constraints are needed to be included
in the GA fitness function by penalty terms. In this paper,
the fitness function is formed as follows:

(9)

if
if
otherwise

(10)

where is the objective function with control vari-
ables ; is the th state variable; and
are the lower and upper limits of ; is a penalty
factor for ; is the violation value of ; and

is the penalty function for state variable
constraints.
With every candidate solution, the chromosome is de-
coded to determine the control variables , and the cor-
responding state variables are computed by the power
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flow calculation. The fitness function of this candidate
solution can then be calculated by (9).

3) Selection operation: Selection is a procedure to guar-
antee that individuals with higher fitness values have a
higher probability of contributing new offspring to the
next generation. The selection rule used in this paper is
the tournament selection [13].

4) Crossover operation: Crossover produces new chromo-
somes by the combination of parent individuals. In this
paper, the uniform crossover method [4] is adopted with
a crossover rate of 0.8.

5) Mutation operation: Mutation is responsible for the in-
jection of new information. For integer-coded chromo-
some, the mutation operation is defined as

(11)

where is a random bit; is the gene after muta-
tion; is the gene before mutation; and
returns a random integer in the range of . In this
paper, the mutation operator is applied with a probability
of 0.03 to every gene of the chromosome.

V. HYBRID ALGORITHM FOR ORPF

A. Novel Hybrid Method

A hybrid method integrating the GA and the IPM is intro-
duced in this section. This method can be mainly divided into
two parts. The first part employs the IPM to solve the ORPF
problem approximated as a continuous problem. Then the
optimal solution obtained is rounded off, in which continuous
values for discrete variables are discretised, and used as the
initial population of GA. The second part is to combine the GA
with the IPM to solve the ORPF for the final optimal solution.
In this part, the original ORPF problem is decomposed into two
sub-problems. One is the continuous optimization sub-problem,
in which the discrete control variables including var sources
and transformer tap ratios in ORPF, are kept constant. This
sub-problem is solved by IPM with the variables in (1) and
(2) expressed as . The other one is the discrete
optimization sub-problem in which the continuous control vari-
ables, including generator voltages in ORPF, are kept constant.
GA is used to solve this sub-problem with the variables in (1)
and (9) expressed as .

The procedure of the proposed hybrid algorithm is summa-
rized as follows.
Step 1) Solve the ORPF problem by IPM with relaxing

the discrete variables to obtain the initial solution
, and .

Step 2) Set iteration count .
Step 3) Determine the optimal and by solving

the discrete optimization sub-problem using GA
with keeping . At the same time,
the last solution is put
into the original population as one individual, and
the best individual in each generation is kept in the
next population in the whole GA iteration.

Step 4) Determine the optimal by solving the contin-
uous optimization sub-problem using IPM with the
values of and obtained in step 3 con-
stant. In the same way, the solution of GA is used as
starting point of IPM.

Step 5) If the convergence criterion is satisfied, terminate the
calculation. If not, set and then go to Step
3.

B. Dynamic Adjustment Strategy

To improve the efficiency of the proposed hybrid method, the
following dynamic adjustment strategies are proposed.

1) Adjustment of Stopping Criterion in IPM: In Step 1 of the
proposed hybrid method, the IPM with the “optimal criterion”
given by (3)–(7) may result in oscillation for solving large-size
ORPF, while the IPM with the “feasible criterion” given by
(4)–(6) is easier to converge with high speed. Besides, the solu-
tion obtained is still continuous, even if using the optimal cri-
terion, and when the discrete control variables are rounded off
to discrete values, the performance of the solution will be in-
evitably deteriorated. Thus, it is unnecessary to use the IPM with
the optimal criterion.

On the contrary, in Step 4, the continuous optimization sub-
problem should be solved using IPM with the optimal criterion,
because there is no rounding problem and the dimension of this
sub-problem with only the continuous control variables is rela-
tively low.

Thus, in Step 1, IPM is used with the feasible criterion, and
in Step 4, it is used with the optimal criterion.

2) Adjustment of Initial Population, Search Area and Stop-
ping Condition in GA: In order to take the full advantage of
the solution of IPM in Steps 1 and 4, the initial population, the
search area, and stopping condition of GA in Step 3 are regu-
lated with different iteration count .

When , all the initial individuals are created randomly
within the range of two step sizes around the values of discrete
control variables obtained by IPM in Step 1, and the search area
in the whole genetic iteration process is also within this range.
The stopping condition is when a feasible individual is found.
This process is here called the “feasible adjusting strategy.”

When , all the initial individuals except one (obtained
by IPM from Step 4) are produced randomly within the op-
erational limits of discrete control variables given by (1), and
the search area in the whole genetic iteration process is within
this operational limits. The stopping condition is when the max-
imum number of iteration is reached or the optimal individual
keeps unchanged for several generations. This process is here
called the “optimal adjusting strategy.”

There are two main reasons for the adjustments above. First,
it is easy and quick, in most cases, to find a feasible individual
around the solution obtained by IPM from Step 1, which is just
like most applications of IPM to ORPF for getting the final dis-
crete result by the rounding off process. Mass numerical tests
demonstrate that if the feasible adjusting strategy is used, it only
takes one or two genetic iterations of GA to find a feasible solu-
tion. The main purpose of using the optimal adjusting strategy
is to provide GA sufficiently large search space to search the
global optimal solution stochastically.
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TABLE I
BASIC INFORMATION FOR TEST SYSTEMS

VI. SIMULATION RESULTS

A. Test Systems

The test systems include the IEEE 30-bus and IEEE 118-bus
systems, and a real power system in Chongqing, China.
The Chongqing system has two equivalent electrical source
buses, seven generators that are located in three power plants,
three 500-kV substations with five three-winding off-load
tap changing transformers, 33 220-kV substations with 44
three-winding tap changing under load transformers, 44 shunt
capacitor/reactor elements, and 3808 MW load. The MVA base
is 100.

Table I shows the basic information for each test system and
the initial active power losses (PL) in p.u. The programs im-
plementing the proposed algorithms in Section V are coded in
MATLAB and executed on a Pentium IV 2.0-GHz processor.

B. Comparison of IPM, GA, and the Hybrid Algorithms

In this paper, five methods, which are listed in Table II, were
tested: (1) GA (from [12]) alone, (2) IPM (with optimal criterion
from [6]) alone, (3) IPM as in (2) but continuous values for
discrete variables are rounded off after convergence (IPM_D).
(4) hybrid method (HGI) combined with IPM and GA from [9],
and (5) proposed novel hybrid method (NHGI) in Section V.
For the GA in Method 1 or GA of HGI and NHGI in Methods
4 and 5, the population size is 20, and the stopping criterion
is that a feasible solution keeps unchanged for ten generations.
For NHGI, one iteration calculation is finished only after both of
the discrete and continuous sub-problems are solved. Therefore,
in this example, the whole optimal calculation for NHGI stops
when the solution keeps unchanged within two iterations.

The optimization results are listed in Table II. It is observed
that GA and IPM with the rounding-off strategy cannot find fea-
sible solutions. Method 2 using IPM produces the minimum
active losses among other tests, but the solution is continuous
and impractical. Only HGI and NHGI can produce feasible and
practical solutions, but active losses from NHGI are less than
those from HGI, and the CPU time taken by NHGI is much less
than that taken by HGI. Comparing the CPU time, the active
losses, and feasibility of solution, the result from NHGI is the
best among the five methods. This paper shows that the pro-
posed hybrid method has its superiority in optimality, and its
ability in dealing with the discrete problem and the convergence
speed is better than that of GA, IPM, and the hybrid method in
[9].

For the IEEE 30-bus system, the optimization results of the
control variables ( and ) obtained by IPM, IPM-D, and
NHGI have been shown in Table III. In general, the bus voltage

TABLE II
OPTIMIZATION RESULTS FOR TEST SYSTEMS

TABLE III
OPTIMIZATION RESULTS FOR IEEE 30-BUS SYSTEM

may violate its limits when the transformer tap ratio variable
is rounded off. When the shunt reactive compensation vari-

able is rounded off, it may result in the limit violation of
both bus voltage and reactive power output of generator. It can
be observed from Table III that the total reactive power com-
pensation in IPM is 0.3443. After rounding off, it be-
comes 0.38 in IPM_D. Thus, most bus voltages are raised up
because the total reactive power injection is increased. Voltage

of the buses, including 3, 9, 12, and 27, have violated their
upper voltage limits as shown in Table III because their original
voltage magnitudes in IPM are very close their upper voltage
limits (1.05 p.u.). This simulation result has demonstrated that
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TABLE IV
STATISTICAL DATA FOR DIFFERENT TEST SYSTEMS

the traditional rounding-off strategy for the solution of ORPF
obtained by IPM may not guarantee the feasibility of optimiza-
tion result.

C. Comparison of NHGI and HGI

The proposed hybrid method (NHGI) and the hybrid algo-
rithm (HGI) from [9] are basically different in the way of the
integration of GA and IPM. To show the influence produced
from the difference, 50 trials have been performed for NHGI
and HGI methods in Section VI-B. The statistical results and
the convergence are shown in Table IV and Fig. 1, respectively.

It is observed from Table IV that the optimal solutions ob-
tained by both methods are feasible. The average, minimum,
and maximum values of the active losses obtained by NHGI are
better than those by HGI, and the standard deviation value from
NHGI is relatively small. In Fig. 1, curve 1 is the result of NHGI,
and curve 2 is the result of HGI. It is observed that the fitness
values of the optimal individuals in the whole iteration process
of NHGI are much better than that of HGI, especially in the
first iteration calculation. Because the initial solution of NHGI
is based on the result of IPM for ORPF with the discrete control
variables being relaxed in Step 1, while the initial solution of
HGI is created randomly.

The superiority of NHGI in the convergence speed can be
guaranteed, even though it is unfair to compare the iteration
counts for HGI and NHGI. This conclusion can be made by the
following comparison: For NHGI in Section V-A, only one IPM
calculation is performed after one GA process. For HGI in [9],
IPM is embedded in the process of GA and is employed to find
the fitness of each candidate solution and hence the number of
IPM calculations is the number of the population size of the GA
in this case. NHGI therefore requires much less IPM calcula-
tions than HGI. It is well known that the computational time for
one candidate solution by the Fast Decoupled Method is much
less than that by IPM. So the proposed NHGI method has no-
ticeable advantage in speed over the HGI method.

The superiority of NHGI in the convergence speed and
optimization of solution is obvious. It is noted that the proposed
NHGI method is, however, still unable to guarantee the global
optimal solution, which is a common weakness of the GA
methods.

D. Test for Effect of Dynamic Adjustment Strategy

To compare the optimal criterion (IPM1) given in (3)–(7)
with the feasible criterion (IPM2) given in (4)–(6) for the IPM

Fig. 1. Maximum fitness curves by HGI and NHGI methods. (a) IEEE 30-bus
test system. (b) IEEE 118-bus test system. (c) Chongqing 161-bus test system.

method, the following tests are performed: 1) Solve the ORPF
problem with the discrete control variables being relaxed by
IPM1 and IPM2. 2) IPM1 and IPM2 as in (1) but continuous
values for discrete variables are rounded off after convergence.
3) Produce 50 approximate solutions of (1) by using the random
rounding-off method within the range of two step sizes around
the discrete variables values obtained from (1). The results of
these three tests are listed in Table V.

It is observed from Table V that the probability for IPM2 to
find feasible solutions is much larger than that for IPM1, the
CPU time taken by IPM2 is much less than that by IPM1, and
the active losses solved by IPM2 are much larger than that by
IPM1.

The above observations confirm the validity of the proposed
strategy in Section V-B that in Step 1 of the proposed hybrid
method, the feasible criterion is adopted for feasibility of the
solutions and convergence speed, while in Step 4, the optimal
criterion is used for optimality of the solutions.
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TABLE V
OPTIMAL RESULT FOR IPM WITH DIFFERENT CRITERIONS

Fig. 2. Maximum fitness curves of the first discrete optimization in NHGI
(with/without adjustment strategy) for IEEE 30-bus test system.

To verify the impact of the dynamic adjustment strategy for
GA to produce initial population and select the initial searching
space, the proposed hybrid algorithm with and without the
dynamic adjustment strategy are tested based on IEEE 30-bus
system. For the case without dynamic adjustment strategy,
when (Step 3), all the initial individuals except one (ob-
tained through rounding off by the solution of IPM from Step 1)
are produced randomly within the operational limits of discrete
control variables given by (1), and the search area in the whole
genetic iteration process is also within this operational limits.

Since the dynamic adjustment strategy mainly affects the
process of the first discrete optimization sub-problem solved
by GA, only the convergence from the two tests above are
compared in Fig. 2, where curves 1 and 2 are the maximum
fitness value of population in the iteration process for the case
without and with dynamic adjustment strategy, respectively.

For the IEEE 30-bus test system, the active losses are about
0.07. So the solution may be feasible only when the fitness func-
tion given by (8) is around 0.07.

It is observed from Fig. 2 that obtaining a feasible solution by
the hybrid algorithm with and without the dynamic adjustment
strategy needs one and ten iterations, respectively. These tests
demonstrate that the dynamic adjustment strategy helps to reach
a feasible solution with high speed and to improve the efficiency
of the hybrid algorithm.

VII. CONCLUSIONS

The GA is very powerful for dealing with discrete variables,
while the IPM is attractive for the efficiency of dealing with
the large-scale continuous nonlinear programming. A hybrid

method based on GA and IPM has been proposed in this paper.
The hybrid method combines the advantages of GA and IPM.
A dynamic adjustment strategy has also been proposed to fur-
ther improve the efficiency of the hybrid method. Numerical
simulations on the IEEE 30-bus, IEEE 118-bus and Chongqing
161-bus test systems illustrate that the proposed hybrid algo-
rithm is very efficient.
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