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A Jacobian-Free Newton-GMRES(m) Method
with Adaptive Preconditioner and Its Application
for Power Flow Calculations

Ying Chen and Chen Shen, Member, IEEE

Abstract—In this paper, an adaptive preconditioner is con-
structed for Jacobian-free Newton-GMRES(m) [JFNG(m)]
methods, which is devised for solving coordination equations in
distributed simulations of power systems. The preconditioner is
updated during both Newton iterations and GMRES iterations
by means of a rank-one update algorithm. The proposed precon-
ditioned JFNG(m) is applied to power flow calculations for test.
The results show that the adaptive preconditioner can enhance
convergence of Newton-GMRES(m) iteration schemes greatly
and has stronger robustness compared with other precondition
methods. Moreover, the proposed method has strong parallelism
and scalability, which makes it feasible to solve distributed simu-
lation problems of power systems.

Index Terms—Newton-GMRES(m), precondition, power flow.

I. INTRODUCTION

HEN studying distributed simulations of power sys-
Wtems, we notice that in heterogeneous computing
environments, it is hard to require all local simulation programs
to provide the same data interface due to the legacy problem.
Meanwhile, power companies joining in distributed simulations
would not like to share too much information with others. It
is ideal for distributed simulations to require only simple and
fundamental information such as states of boundary nodes.
Thus, we model the coordination side in distributed simulations
as a set of implicit nonlinear equations, which regards voltages
of boundary nodes as inputs and power mismatches of these
nodes as outputs. Then a general nonlinear solver, which can
find roots of nonlinear equations without exact system models,
is required to tackle such boundary equations. Jacobian-free
Newton-GMRES(m) [JFNG(m)] methods are ideal candidates,
which are well developed to solve PDEs and ODEs. As sum-
marized in [1], these methods are synergistic combinations of
Newton-type methods for super-linear convergent solution of
nonlinear equations and GMRES methods [2] for solving the
Newton correction equations. By using the finite difference
technique, the Jacobian-vector products are approximated
without forming and storing Jacobian matrix elements.
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To reduce the number of GMRES iterations and speed up the
JFNG(m) methods, various precondition techniques have been
developed. Some of these works build up effective precondi-
tioners based on ILU decomposition of a fixed Jacobian matrix
obtained at the beginning of the Newton iteration or some de-
tailed mathematical models of the nonlinear equations [3]-[6].
Some other works concern constructing preconditioners adap-
tively inside the Arnoldi process. These works can be split into
two main families, depending on whether the scheme adaptively
updates the preconditioner [7], [8] or enlarges the generated
Krylov space [9], [10]. However, almost all of them require
eigenvalue or eigenvector estimations during preconditioning,
which increases both complexities and costs of algorithms.

In this paper, we focus on building an adaptive precondi-
tioner that does not need estimations of the Jacobian or its
eigenvalues. The idea is to utilize the projections on the Krylov
subspace produced by the Arnoldi process directly to perform
corrections of preconditioners. The intrinsic relations between
these projections guarantee that the preconditioner can approx-
imate the inverse of the Jacobian matrix effectively. The light
is coming from [11], in which a low-order Broyden correction
method is used to update the preconditioner for each of the
subsequent Newton iterations. Here, we impose similar updates
into GMRES iterations that make use of Krylov subspace
projections to perform Broyden corrections. A simple but to-
tally “Jacobian-free” right preconditioned Newton-GMRES (m)
method has been forged based on this adaptive update scheme.
This totally “Jacobian-free” feature is quite meaningful when
the Jacobian matrix is too complex to be obtained explicitly
or is too expensive to be generated completely, especially for
some distributed or parallel computing applications.

Since it is developed to solve boundary equations in
distributed simulations, which are actually power balance
equations of boundary nodes, the proposed method is applied
to power flow calculations to test its convergence. Different
from [3]-[5], we focus on Jacobian-free features and make
comparisons only between iterative methods with such features.
As we are limited by space, the distributed power flow model
will not be detailed in this paper.

The content of this paper will be organized as follows.
In Section II, some preliminaries such as the standard right
preconditioned Newton-GMRES(m) method, rank-one up-
date methods, and the work of [11] are introduced briefly.
Section III details the inner preconditioner updates contributed
by this paper. Section IV describes applications of the proposed
preconditioned JFNG(m) method to power flow calculations,
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including the comparison results with other preconditioned
JFNG(m) methods. Section V contains conclusions.

II. PRELIMINARIES

The general form of the JFNG(m) method for nonlinear equa-
tions is given for the reference as shown below [12].

Algorthm 2.1: The JFNG(m) method with modified
Gram—Schmidt orthogonalization and Givens rotations for
the nonlinear equations f(z) = 0,2 € R™, f € R"

1) Set k = —1 and choose an initial approximation z.

2) k =k + 1, repeat until || f(z)||2 < errtoly.

3) Enter the GMRES(m) iteration to solve the correction

function: f (z1)Az = —f (k)

o 1o = —f(xk),l = =1,p = ||rol|2,v0 = 1o errtolg =
€|lroll2 > 0.

e While p > errtolg andl < m, do

I=1+1

z] = M’Ul
flaw+wz) - flar)

7
v = f (zr)z =

w
Orthogonalize V;y1 = [v1,v2,...,v141] and get
Hessenberg matrix H = (h; ;). Apply and create
Givens rotations, p = ||(g)i+1]-

e Set

ri; = hij, forl1 <e,5 <k
{ (w)i = (g)i; forl S ) S k.

Solve Ry; = w to obtain Az, = MVyy,.
4) Update. Compute the new approximation of x
T, + Az,

JFNG(m) methods can be viewed as combinations of inexact
Newton strategies (using k& as iteration index) and GMRES(m)
methods (using [ as iteration index). For GMRES(m) methods,
preconditioners can be used to enhance their convergence. In
above algorithm, steps such as z; = Mwv; and Az, = MVyy,
are actually performing right preconditioning, which means that
instead of solving the equation f (z3)Axzy = — f(x,) directly,
equations such as

P T+l =

f )My = — f(zr), My = Axy,

are solved. The matrix M is called a preconditioner, which is
designed to cluster eigenvalues of f'(a:k). It is easy to see that
the more accurately the M approximates f'(xk)_l, the faster
GMRES converges. Further, if the preconditioner matrix series
used during each Newton iteration such as M;,z = 1,...,m
satisfies that

lim M; = ozf/(:z:k)_l, wherea € Rand o # 0 1

the convergence of GMRES iterations would be better enhanced
more than the normal fixed preconditioner strategy. Different
approaches have been developed for constructing the series M,
such as [7] and [8]. In this paper, a rank-one update method is
adopted to achieve this goal without concerning system models
and eigenvalue estimations of Jacobian matrices.
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The original rank-one update methods [13] are designed to
approximate the destination matrix or its inverse iteratively.
There are many classes of rank-one update methods. The
Broyden methods are focused on in our paper, which are
suitable for solving nonsymmetrical linear systems. In its most
general form, the Broyden method is given by the following.

Algorithm 2.2: Broyden’s method [14]

1) xq, Hy arbitrary, ro = b— Axg

2) For k = 0,1, -, until convergence
* pr = Hyry
* g = Apr

* Tpy1 = Tk + QEDk

* Tk41 = Tk — QkQk

* Hppr = Hi + ((0x — Heqr) f7)/(FFax)
where H), is an approximation of A~! and needs to be chosen
in such a way that f g, # 0. The best-known member of the
Broyden methods is so-called “Broyden’s good” method with
fr = Hl pi. As discussed in [11], the Broyden’s good method
can be used to update the preconditioner for each of the subse-
quent Newton iterations.

Algorithm 2.3: Preconditioner update based on Broyden’s
good method [11]

1) Suppose a preconditioner is obtained as M.,.

2) Compute f (zx)Azy, = —f(x).

Perform GMRES iterations to solve linear equations with
fixed right preconditioner M, and obtain solutions as
Th41-

3) Set sg = Tp+1 — Xo,wo = f(@kt1) — f(zk).

4) M, = M,+((so — Mawo)sE M)/ (st Muwo), k = k+1;

then, go to step 2).

This update strategy can make the preconditioner matrix
tracing the inverse of the real Jacobian matrix during the
Newton iterations. It is denoted as the outer preconditioner
update in this paper. However, it still starts from an already
known preconditioner matrix M, constructed at the beginning
of the Newton iteration, which is usually the inverse of the
Jacobian. Enlightened by its update strategy, we propose a
similar inner preconditioner update into the GMRES iter-
ations, which makes use of projections on Krylov subspaces
generated by the Arnoldi process to update the preconditioner
continuously.

III. ADAPTIVE PRECONDITIONERS BASED ON
OUTER AND INNER UPDATE

It can be observed that in the step of Algorithm 2.1 as

/ ~ flae +wz) — fag)

v = f (z)z = "

@

where the finite difference is performed to approximate the Ja-
cobian vector product, f(z) is evaluated once, and a group of

{Af = fzy +wz) — f(xx) 3)
Az =z + wz — Tk = w2

is obtained. Obviously this group of Af and Az renders a
chance to perform one Broyden correction to approximate the
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inverse matrix of Jacobian. So, by utilizing the secant direc-
tion produced during the finite difference, we can update the
preconditioner continuously in GMRES iterations. This update
procedure is denoted as the inner preconditioner update here.

Together with the outer preconditioner update, the JENG(m)
with full outer and inner preconditioner updates is outlined as
follows.

Algorithm 3.1: JFNG(m) method with inner and outer pre-
conditioner update for the nonlinear equations f(x) = 0,z €
R™ f € R"

1) Set k = —1 and choose an initial approximation z, select

a nonsingular matrix M, as the preconditioner, such as
My = nl, where I = diag(1,...,1) € R™*™, and 7 is
a real constant value.
2) k =k + 1; repeat until || f(z)||2 < errtoly.
3) Enter the GMRES(m) iteration to solve the correction
function: f (z1)Axr = —f(xp).
e rog = —f(zr),l = —=1,p = ||roll2, v0 = roerrtolg =
6”7‘0“2 >0 Mgl = M.
e While p < errtolg and | < m, do
—Il=1+1
—2Z] = Mkvl
—Afl = flar +wz) = flz), Azl = wz, vg =
A~ iln/w
/Update the preconditioner ma-
tix M, as M = M+
((Axfn - Z\4ilnA iln)AxfnTMiln)/(A:E%nMilnA iln)'
— Orthogonalize Viy; = [v1,v2,...,v;41] and get
Hessenberg’ matrix H = (h; ;).
— Apply and create Givens rotations, p = ||(g)1+1]|-
* Set

Ti,j = }Li_’]y forl < L7J < k
{ (w),i = (g)qj, forl < ) < k.
Solve Ry; = w to obtain Az, = My[v1, v, ..
Set M), = M.
4) Compute the new approximation of x : Ty 1 = )+ Axy,
compute the residual f(zy41), and Afy = f(zr41) —

f(@r).

5) /Update the preconditioner matrix Mj, as

Sy

(Azy, — MkAfk)(MkTAxk)T'

M1 = My +
= ’ (M Azy)TA fr

Steps with / are inner and outer preconditioner update pro-
cedures, respectively.

A. Difference Between the Outer and Inner
Preconditioner Updates

The outer update utilizes information produced by Newton
iterations. When the Newton strategy is used to search the solu-
tion of f(x), the Jacobian matrix actually indicates the tangent
direction at certain point on the curve of f(z). The Jacobian
matrix f / (z) varies as the searching point approaches the real
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solution. The preconditioner for GMRES iterations is the ap-
proximation of f / (x)~L. The outer update, which uses the se-
cant direction to approximate the tangent direction, enables the
preconditioner to follow the changes of the real f ' ()7L,

The inner update constructs the preconditioner based on pro-
jections on the Krylov subspace generated by GMRES itera-
tions. It can be proven that in GMRES iterations, each update
will pull one eigenvalue of f / (z1)M to the neighborhood of the
point (1,0) on the complex plane.

During inner updates of Algorithm 3.1, as Azl = wMjv,
Afl = wuyy = f (xx) Az, from the update equation

n?’

(Axfn — ]\4ilnA iln)(MilnTA'Z‘%n)T

M = Mty 4)
" " (MilnTAx{n)TA iln
we can have
F ) M A Sl = f () Axd, = Af, 5)
f’(xk)Mil:1w+1 = V41. (6)

Obviously, f ()M has an eigenvalue as 1, and v, 1 is the
eigenvector corresponding to it. Actually, not all the eigenvalues
of f (z)MF" can be pulled to (1,0) exactly but to a small
neighborhood of it, due to influences of the outer updates. These
can be seen in the later test results.

In a word, the outer preconditioner update will trace the
Newton search direction, while the inner update procedure
will utilize projections on the Krylov subspace to rearrange
the spectral structure of f (z)M. It should be noted that as
M is started from an almost arbitrary matrix nI, Jacobian-free
preconditioners really could be constructed.

B. Modifications for Efficiency Improvement

The rank-one update (4) involves matrix vector productions
and vector multiplies. As the rank of M increases, it will take
great time and memories to perform such updates. These costs
sometimes are even larger than those for GMRES iterations.
Two modifications are proposed to improve the efficiency of
both inner and outer updates.

1) Generate My, implicitly: Note that only the matrix vector
products such as z; = My and Az, = M Vyy, are required
in the Algorithm 3.1. So there is no need to generate the M
explicitly.

As My is known, we collect all Az and Af used in steps
with / of Algorithm 3.1 together. Suppose that when My, is
wanted, there are already n,s.q number of Az and A f obtained,
which can be expressed as Az;, Af;,i = 1,--+,Nyseq- Then
referring to [13], z; = Mjv; can be calculated through the fol-
lowing scheme.

Algorithm 3.2: Calculation of Myv;

1) z] = M()’Ul

2) fori=1,-,Nyused, 21 = 21 +plesi, where p; and s; are

calculated as

3) ti = MoAf;

4)y foryj=1,...,1 —1,t;, =1, + p?_ltisj—l

5) S; — A:LZ — ti

6) ¢; = Axlty,p; = Aw; /¢



CHEN AND SHEN: JACOBIAN-FREE NEWTON-GMRES(M) METHOD WITH ADAPTIVE PRECONDITIONER

The overall procedure above could be viewed as two parts
as that 3) — 6) preparing vectors for preconditioner updates
and 1) — 2) calculating the desired matrix vector products
recursively using the latest preconditioner implicitly. It can be
seen that besides My, only two vectors such as p; and s; need
to be stored for preconditioner updates actually, which saves
storage effectively.

2) Truncated Vectors for Update: As Newton and GMRES
iterations are carried out, more and more p; and s; are produced
and stored. This increases number of the vectors used for steps
2) and 4) of Algorithm 3.2, which would consume more time
and storage. Therefore, a simple strategy is adopted to overcome
this shortcoming, which limits the number of vectors for update
and precondition as shown in the following.

 Changes in Algorithm 3.2 step 2) for i = max(1, nysed —

NimitP); * * * s Nused 21 = 21 + P} 218;
 Changes in Algorithm 3.2 step 4) for j = max(1, nysed —
MimitU), -, % — Lt = t; + p}lﬁisj—l

The njimitu and nymitp are limitations for preconditioner up-
date and precondition, respectively. In our numeric tests, these
two are selected heuristically as

NimitU = Nimitp = 3rank(M)/4 + 1. @)

Remarks

Remark 3.1: Destination of eigenvalue shifting: Letus review
the equation (4). If a parameter « that «€ R and a0 is added
before the first Az!_, the equation (6) will become as

n°’

! 7

(f (x) M oy = f (we)Miyovy = avipr (8)

which means that f'(z;,) M has an eigenvalue as v, and v;4 1
is the corresponding eigenvector. That is, by selecting «, the
eigenvalues of f / (z k)Milr;" ! can be shifted to any desired point
on the complex plane during inner updates. The normal choice
is to shift all the eigenvalues to point (1,0), which is adopted
by later application actually. However, as implied in equation
(1), the destination of shifting can be other points on the hori-
zontal axis. Then a problem is arisen as which point is the best
choice that needs minimal efforts to shift all the eigenvalues
of f’ ()M to it? Some researches have been done on this
problem. The initial results show that the effects of precondi-
tioner M is not only decided by the value of the smallest eigen-
values but also affected by distributions of all the eigenvalues of
f(@)M.

Remark 3.2: Choice of My: Notice that in the above pre-
conditioner update scheme, the initial preconditioner matrix is
chosen almost arbitrary. The outer and inner updates can make
it approximate f ()" effectively. This is its best merit that
makes it suitable to JENG(m) methods. However, these update
strategies could also be used to improve other preconditioners
easily. The choice of preconditioner M, could be some ILU
decomposition results of Jacobian matrices or some precondi-
tioners produced before. This is very useful in applications for
dynamic simulations of power systems, where nonlinear equa-
tions are solved for continuous time steps (see [6]).
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Remark 3.3: Parallelization abilities: One of the advantages
of JFNG(m) methods is that they are easy to be deployed
for parallel computing. The prototype of our preconditioned
JFNG(m) method as Algorithm 3.1 has good scalability for
parallel applications. The most simple parallel strategy might
be performing the inner preconditioner updates simultaneously
with other GMRES iteration procedures.

As discussed in [13], the modifications for efficiency im-
provement would make the preconditioner updates hard to be
parallelized. However, the Jacobian-free feature of precondi-
tioners creates possibilities for parallelization. In our researches,
a distributed computing scheme has been developed success-
fully based on the proposed method for distributed power flow
of power systems.

IV. APPLICATION TO POWER FLOW CALCULATION

As reported in [3], Newton—Krylov methods could be ap-
plied to solve different power system problems, such as power
flow calculations and dynamic simulations, especially for large
power systems. In [4]-[6], Newton-GMRES methods are pro-
posed for power flow calculations. Some popular precondition
technologies are adopted in these works, especially the ILU
method, which decomposes an approximation of the Jacobian
matrix to produce the preconditioner. Obviously, the initial
Jacobian matrix is needed. In the recent work of [15], a precon-
ditioner obtained from a linear combination of matrix-valued
Chebyshev polynomials is used for the conjugate gradient
method to solve power flow problems. This kind of precondi-
tioner requires eigenvalue estimations of Jacobian matrices and
historical matrix-valued Chebyshev polynomials to perform
updates. These works only make use of GMRES methods
to solve linear equations as Az = b without concerning the
Jacobian-free feature of Newton-GMRES methods.

Combined with the presented adaptively updated precondi-
tioner, a fully Jacobian-free Newton-GMRES(m) method has
been developed in the above sections. It is easy to deploy this
method for the power flow problems. What we need to do is just
to write out the power balance equations of the power network
as

f(.’l?):07117:[917...70n,’(}17...,’0n]T (9)

and substitute them into Algorithm 3.1.

Since Jacobian matrices of power flow equations are al-
most pivot dominated, the My in Algorithm 3.1 is selected as
(Diag(f' (x0)))~", which is the inverse of diagonal parts of the
initial Jacobian matrix and could be obtained implicitly as

For:=1,2,...,n

filzo +we;) — fi(zo)

w

Ji =

(10)

where f; is the ith equation of power balance equations; e; €
R ei(§)=0,5=1,2,...,i—1,i+1,...,m,¢e;(i) = 1,and
w > 0 is a small constant. Actually, the computation cost of the
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above procedure is equal to one evaluation of overall equations

).

A. Test Cases

All simulations were carried out on the platform of MATLAB
version 5.3. Three systems are tested for the proposed method,
which are IEEE 39- and 118-bus systems and a real network
(1167 buses) of Hebei Province in China.

For the small system such as the IEEE 39-bus system, tests
performed are mainly concerned with effects of preconditioner
updates. The M, is chosen as I. Preconditioner matrices M}
are produced explicitly. Matrices of f (z;)~!, to which M,
is made to approximate, are also generated. Spectral structures
of f'(xk)M r are studied to evaluate effects of preconditioner
updates. For medium and large systems such as IEEE 118-bus
and Hebei systems, the efficiency of the proposed method is
tested. The number of both Newton iterations and GMRES iter-
ations is recorded. Comparison between the unpreconditioned
Newton-GMRES(m) method and our preconditioned version is
made to illustrate effects and efficiency of preconditioners.

As the number of boundary nodes is limited, the size of
boundary equations is equal to that of power flow equations of
small or middle scale systems. Thus, IEEE 39- and 118-bus sys-
tems are used in comparisons between different Jacobian-free
preconditioners.

For Newton-GMRES methods, the number of matrix vector
products is one of the important indexes of the convergence
rate. Moreover, as finite difference technologies are adopted,
one Jacobian matrix vector product will require one evaluation

of f(x).

B. Test Results

1) Test Results of IEEE 39-Bus System: For the IEEE 39-bus
system, parameters for Algorithm 3.1 are selected as

errtoly = 1072, errtolg = 0.1||ro||2, m = 40.

The power flow calculation begins from flat start and con-
verges after four Newton iterations. The relation between
logollf(2)]|2 obtained at each Newton iteration and the times
of evaluation of f(z) can be viewed as shown in Fig. 1.

In our method, each evaluation of f(z) would activate one
preconditioner update. As shown in Fig. 2, after updates are car-
ried out, the eigenvalues of f / (21 )Mj, are pulled to the point
of (1,0) on the complex plane, which indicates that M ap-
proaches f (x;)~" gradually.

2) Test Results of IEEE 118-Bus System: For the IEEE
118-bus system, parameters are selected as errtoly =
1075 errtolg = 0.1||rol|l2, My = (Diag(f (20)))~*. From
flat start, normal Newton-GMRES(m) (without precondition)
and the proposed preconditioned version are both applied to
solve the flow problem. Two tests are performed for m = 40
and m = 100.

Fig. 3 shows that due to preconditions, the proposed
method converges faster than the unpreconditioned Newton-
GMRES(m) method. It also can be seen that the parameter
m affects convergence of unpreconditioned JFNG(m) greatly,
while it makes little influence to the JENG(m) with the adaptive
preconditioner. This is because with inner updates, the min-
imum eigenvalue of preconditioned Jacobian matrix f’ (1) My,
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Fig. 1 Convergence procedure of IEEE 39-bus system.
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Fig.2 Spectral structure of f ' (21 ) M, changing with preconditioner updates.
(a) Without updates. (b) After 12 updates. (c) After 53 updates. (d) After 76
updates.

could be shifted to (1,0) after a certain number of updates.
After that, the GMRES recurrence could converge quickly in a
few iterations. This feature makes our proposed method more
robust to different systems.

It can also be observed that during the first several Newton
iterations, two methods have almost the same convergence rate.
This phenomenon can be explained as that because the updates
of preconditioner always follow the projections in the Krylov
subspace generated by GMRES methods, the preconditioner
will not work on the new projection vectors. In the first sev-
eral Newton iterations, although the x;, steps forward substan-
tially, the projections made by GMRES are almost on different
directions in the Krylov subspace. Therefore, the preconditioner
could only accelerate the iterations after a certain number of di-
rections in the Krylov subspace have been searched.
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Fig. 3 Convergence procedure of IEEE 118-bus system.

3) Test Results of Hebei System: For the Hebei system,
parameters are selected as errtoly 1072, errtolg
0.1||70||2, Mo = (Diag(f (20)))~" and m = 60,200. Starting
from flat start, normal Newton-GMRES(m) and the proposed
preconditioned version are compared as in Fig. 4.

From the above figures, it is easy to obtain the same results
as those got from test results of the IEEE 118-bus system. How-
ever, to larger systems, the proposed method shows even more
advantages in convergence.

4) Comparisons Between Different Jacobian-Free Precon-
ditioners: As introduced before, several Jacobian-free precon-
dition techniques have been developed for GMRES methods,
such as those in [7]-[10]. Here convergence rates of Newton-
GMRES methods with these techniques are compared with that
of the proposed preconditioned method in this paper, under the
situation that the size of the Krylov subspace changes greatly.

Among these works, [7] and [8] are derived from the same
idea as our method, which builds preconditioners through adap-
tive updates. In [7], Choquet constructs preconditioners directly
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Fig. 4 Convergence procedure of Hebei system. (a) m=60. (b) m=200.

from the Krylov subspace and Hessenberg matrices generated
by Arnoldi processes. Reference [8] utilizes a similar formula
to build preconditioners in an approximated invariant subspace
of the coefficient matrix. Reference [8] is proposed for GMRES
to solve linear equations, while [7] has full considerations about
nonlinear situations. Therefore, comparisons are only made be-
tween Choquet’s preconditioned method and our method. As
illustrated in Fig. 5, for the IEEE 39-bus system, as the size of
the Krylov subspace increased, the Choquet’s method has the
same convergence rate as the proposed method, while for the
IEEE 118-bus system, although the Choquet’s method is faster
than the unpreconditioned Newton-GMRES method, it is no-
tably slower than the method introduced in this paper. It also
can be observed that the presented method is more stable than
the Choquet’s method, whose convergence rate varies greatly as
the size of the Krylov subspace changing.

In [9] and [10], GMRES methods are accelerated by deflated
and augmented Krylov subspace techniques. Reference [9]
presents the famous GMRES-E(m,k) method, which augments
the Krylov subspace with the approximated eigenvector of the
coefficient matrix. This method has been adopted by [6] to
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Fig. 5 Comparisons with Choquet’s method in [7]. (a) Test results from the
IEEE 39-bus system. (b) Test results from the IEEE 118-bus system.

solve power flow problems. It should be mentioned that in [6],
GMRES-E(m,k) method is used with ILUT preconditioners,
which are not Jacobian-free. Therefore, it should not be com-
pared with the introduced Jacobian-free method. Only if pure
GMRES-E(m,k) methods are applied to power flows could fair
comparisons be made.

From Fig. 6, it can be seen that the proposed adaptively pre-
conditioned method is faster and more stable than GMRES-
E(m,k) methods distinctly.

In the work of [10], DEFLGMRES(m,]) is introduced, which
constructs preconditioners from an invariant subspace of the
Hessenberg matrix generated through Schur decomposition.
During building preconditioners, this method needs to evaluate
the matrix vector product of the coefficient matrix and the base
vectors of the invariant subspace. Thus, as more base vectors
of the invariant subspace are used to forge preconditioners,
additional matrix vector products as well as evaluations of f(z)
are needed. This can be observed in Fig. 7, especially from
those test results from the IEEE 118-bus system.
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Fig. 6 Comparisons with GMRES-E(m,k) methods. (a) Test results from the
IEEE 39-bus system. (b) Test results from the IEEE 118-bus system.

Obviously, the presented method wins advantages over
DEFLGMRES(m,]) methods on the convergence rate and
robustness.

V. CONCLUSION

In this paper, a new adaptive preconditioner is introduced
for Jacobian-free Newton-GMRES(m) methods. The precondi-
tioner is constructed simply based on rank-one matrix updates
inside and outside GMRES iterations. After theoretical analysis
and tests, we believe that the preconditioner has several advan-
tages as shown in the following.

e The proposed update scheme needs no approximation
of Jacobian matrices and their eigenvalue evaluations.
Based on it, a totally "Jacobian-free" Newton-GMRES(m)
method can be formed.

* As mentioned in Section III, the inner updates make the
preconditioner approximate the inverse of the Jacobian ma-
trix effectively. Therefore, as proven in tests, the proposed
preconditioner can enhance the convergence of JFNG(m)
greatly.
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the IEEE 39-bus system. (b) Test results from the IEEE 118-bus system.

Because it is designed for solving general nonlinear equa-
tions, our JFNG(m) method can be easily deployed for
many different applications. In this paper, this method
has been applied to power flow calculations. The nu-
meric results show that it is comparable to conventional
Newton—Raphson methods.

The update scheme can be used with other precondition
technologies. It can be used to enhance the performance of
preconditioners obtained by other methods.

The proposed method has been proven to have high conver-
gence rate and strong robustness by comparisons with other
preconditioned Jacobian-free iterative methods referred to
in this paper.

As a fully Jacobian-free method, our method has strong
parallelism compared with traditional methods based on
direct linear solvers, which means it can be easily de-
ployed into centralized parallel computers or distributed
computing environments.
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