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ABSTRACT
Buffer overflows cause serious problems in different cate-
gories of software systems. For example, if present in net-
work or security applications, they can be exploited to gain
unauthorized grant or access to the system. In embedded
systems, such as avionics or automotive systems, they can
be the cause of serious accidents.

This paper proposes to combine static analysis and pro-
gram slicing with evolutionary testing, to detect buffer over-
flow threats. Static analysis identifies vulnerable statements,
while slicing and data dependency analysis identify the rela-
tionship between these statements and program or function
inputs, thus reducing the search space.

To guide the search towards discovering buffer overflow in
this work we define three multi-objective fitness functions
and compare them on two open-source systems. These func-
tions account for terms such as the statement coverage, the
coverage of vulnerable statements, the distance form buffer
boundaries and the coverage of unconstrained nodes of the
control flow graph.
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1. INTRODUCTION
Testing activity consumes about 50% of software develop-

ment resources thus any technique aimed at reducing soft-
ware testing costs is likely to produce positive effects on cost
reduction. Indeed, exhaustive and thorough testing is often
too expensive and infeasible due to resource constraints.

Other techniques such as code inspection are known to
be more effective but even more costly than testing. Unfor-
tunately, defects slipped into deployed software may crash
safety or mission critical applications causing threat to hu-
man beings or unacceptable economical losses. Indeed, buffer
overflow is often exploited to gain unauthorized privilege or
access to software systems. As reported by CERT1, over
50% of software system vulnerabilities are caused by buffer
overflows.

Recently [6] it has been proposed to use Genetic Algo-
rithms (GA)s to generate test cases with the goal of identify-
ing buffer overflow threats. The approach integrates knowl-
edge of the potentially vulnerable statements and slicing to
reduce the search space.

First, static analysis identifies statements that could be
potentially affected by buffer overflows; these are usually
statements performing operations on buffers (e.g., array ac-
cess, or invocation of unsafe string copy functions). Second,
slicing and data dependency are used to identify which in-
puts affects the execution of vulnerable statements. Finally,
the search is guided by a fitness function balancing several
terms in an attempt to smooth the landscape and efficiently
guide the search.

This paper presents novel fitness functions and new re-
sults obtained by improving the approach proposed by Del
Grosso et al [6]. The key idea is to drive the discovery

1http://www.cert.org/summaries
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of buffer overflows by covering control flow graph uncon-
strained nodes, i.e., nodes that do not dominate nor post-
dominate any other node [14]. Intuitively, test cases covering
these nodes constitute a minimal set of test cases required
to meet statement coverage criterion. Furthermore, we also
considered the distance from the buffer boundaries as a fac-
tor guiding the search.

Finally, with respect to that proposed by Del Grosso et
al, instead of generating a complete test suite, here each run
of the GAs aims to detect a single buffer overflow. This
decreases both required memory and average time to detect
a buffer overflow.

The remainder of the paper is organized as follows. Af-
ter a review of the related work, Section 3 summarizes the
approach presented by Del Grosso et al [6] and describes
how the approach has been improved. Section 4 describes
the empirical study performed, detailing the context and
presenting results. Section 5 concludes.

2. RELATED WORK
Many approaches and tools have been developed in the

past to detect buffer overflow problems. Existing tools can
be classified into static and dynamic tools.

Static tools detect the usage of potentially vulnerable func-
tions, perform integer range analysis, track the string ma-
nipulation operations. Among existing tools, it is worth
mentioning ITS4 [19], RATS [2] and Splint [12] (actually
used for the work done in this paper). The main weakness
of static tools is that they are rather imprecise, since the
problem of statically detecting buffer overflows is, in gen-
eral, undecidable.

DaCosta et al [5] proposed an approach to evaluate the
security vulnerability likelihood of a function. The approach
is based on the assumption that a function near a source of
input may have a high likelihood of being vulnerable.

Haugh and Bishop [10] proposed an approach in which
the source code was instrumented to track buffer length,
and function parameters were checked to eventually warn
when buffer overflow problems occur. Many other tools are
available, for example Purify [9]. Ruwase and Lam [16] pro-
posed an approach and a tool to prevent and detect buffer
overflows. We share with this work the conclusion that, de-
spite the many attempts to tackle buffer overflow statically
and automatically, in most case program execution is the
only way to tackle this problem.

Despite the number of available tools, to detect likely
buffer overflows, traditional testing strategies provide a marginal
contribution to generate test cases capable to actually dis-
cover buffer overflow [21]. Indeed, most of the existing test-
ing strategies focus on regular program operations, that is
unlikely to exhibit buffer overflows. Miller et al [15] pro-
posed a tool, Fuzz, used to test UNIX utility giving them
inputs consisting of large streams of characters.

Dynamic approaches suffer two weaknesses: i) the need for
suitable test suites, i.e., program inputs capable of detecting
buffer overflows and ii) where test cases are automatically
generated, this is mostly done randomly. The approach pro-
posed in this paper aims to perform a more efficient gener-
ation of test cases using an evolutionary testing approach.

Evolutionary testing was successfully used in the past for
many different purposes, describing all of them is out of
scope of this paper. An exhaustive survey has been recently
written by McMinn [13]. Korel and Al-Yami [11] gener-

ated test cases that violate some assertion conditions, while
Tracey et al [17, 18] used GAs and simulated annealing to
generate test data with the purpose of exercising the excep-
tion handling. The evaluation of these approaches, however,
was limited to 200 LOC programs.

Finally, as Binkley and Harman showed [4], program slic-
ing and data dependency analysis can be effectively used to
reduce the GA search space. We use a similar approach to
determine whether it exists an cause-effect relationship be-
tween program inputs and variables used in likely dangerous
statements.

3. THE PROPOSED APPROACH
This section summarizes the stress testing approach pre-

sented by Del Grosso et al [6] and highlights the novelty
and contribution of this paper, in particular the new fitness
functions.

The approach aims to generate test cases to cause and
thus detect buffer overflow. The main steps are outlined in
Figure 1 and are explained in the remainder of this section.
Test cases are generated using evolutionary techniques based
on GAs. To reduce the search space, static analysis and
slicing are used. The Software Under Test (SUT) is first
analyzed using static analysis techniques, to determine the
set of source code lines that could potentially be exploited to
cause a buffer overflow. Second, to reduce the search space
of the evolutionary testing, program slicing [23] is used to
detect the cause–effect relationship between program inputs
and the lines identified in the previous step.

3.1 Detecting Vulnerable Statements
This first step relies on the source code static analysis and

extracts the following information:

• a list of source code statements considered vulnerable
to buffer overflow;

• a list of usages of potentially unsafe C functions; and

• when possible, the estimated size of buffers.

This step can be performed with several tools such as
RatScan [1] (a graphical from end to RATS) or the freely
available Splint [12]. In general, these and other comparable
tools permit the identification of program vulnerable state-
ments and of several programming errors (such as unused
variables, inconsistent types, usage before definitions, etc.).

3.2 Slicing and Data Dependency
The aforementioned static analysis identifies a number of

source code statements that can potentially be affected by
buffer overflow problem. However, given a set of inputs
I ≡ {i1, . . . , ij}, and a potentially vulnerable statement, it
may happen that only a subset of I influence such a state-
ment. In other words, sometimes there do not exist data
dependencies or control dependencies between a given in-
put and the dangerous statement. As a consequence, the
search space for determining test cases can be reduced via
static slicing performed with tools such as the GrammaTech
CodeSurfer.

In general, an input ij is included in the search space iff
it exists a source code line potentially vulnerable that is
data dependent from the input ij . If the input ij is one of

1038



Figure 1: Test case generation process

the command–line parameters, whenever possible we cap-
ture the statement(s) that access such a parameter from the
** argv variable. To this aim, we perform backward slices
starting from vulnerable statements back to argv or to a
statement using the argv variable.

3.3 Test Case Generation using GA
Using evolutionary testing techniques to solve our prob-

lem requires, as for any other problem tackled using GA,
the definition of the chromosome, the crossover and muta-
tion operators, the fitness function and other GA parameters
(e.g., the number of generations or the population size).

The genome used by Del Grosso et al. [6] was a two-
dimensional array genome where each row is a test case and
each column is a program or procedure input (i.e., the k-th
column is the k-th input parameter). Columns have different
types matching parameter type.

In this new formulation, an individual represents a single
test case, encoded as an array of test input data. Indeed,
the old formulation was a compromise between the goal of
detecting buffer overflows and a understated aim to generate
test suites with the highest possible statement coverage.

However, the primary goal is to detect buffer overflows
or other vulnerabilities. Once such a goal is achieved, the
statement coverage has no practical use and no further ac-
tion is required since program vulnerability is demonstrated
by exhibiting a test case exposing such a vulnerability. The
net effect of changing the genome representation, for a fixed
population size, is a reduction in required memory and fit-
ness evaluation time.

Choosing the right mutation and crossover operators is al-
ways a challenge, since they can greatly influence the results.
We found that different crossover operators exhibit differ-
ent performances for different types of input data. In par-
ticular, for numeric input the whole crossover was adopted
(i.e., values of the offspring are linear combinations of the
parents’ values), while for strings, characters and, in gen-

eral, for heterogeneous inputs, we used the simple one-point
crossover [8].

The mutation operator was of type creep mutation. For
numerical data, each gene is randomly selected from the
genome, and then it is incremented of a particular value.
For strings, mutation is performed by appending random
strings to the existing gene. Creep mutation was adapted
to our problem in such a way to promote buffer overflows.
More precisely, if the input j has been selected for mutation,
and if such an input has potential impact on a buffer B then
the mutation is a function of the buffer B estimated size.

Optimization problems aim at searching for a solution in
a search space that minimizes (or maximizes) a fitness func-
tion. In this paper three different fitness functions were
compared:

1. The fitness function proposed by Del Grosso et al. [7]
(we refer it as Vulnerable coverage fitness);

2. A modified fitness function, accounting for nesting level
reached (we refer it as Nesting fitness); and

3. A fitness accounting both nesting and a factor account-
ing for the distance from boundaries in buffer accesses
(referred as Buffer boundary fitness).

3.3.1 Vulnerable coverage fitness
First and foremost, the fitness should account for the abil-

ity of a test suite to discover crashes. However, a fitness
function solely related to detected or undetected vulnera-
bility would lead to a flat landscape (representing program
executions that do not generate exceptions) with few spikes
(exceptions), and therefore to a random search.

To obtain a more favorable landscape driving the search
towards the spikes, dynamic information needs to be used.
It was experienced that some possible elements to use in a
fitness function are the following ones:
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• statement coverage: a thorough code coverage con-
tributes to increase the likelihood that an exception
is raised or that a buffer overflow is caused.

• vulnerable statement coverage: much in the same way
as above, covering vulnerable statements increases the
likelihood of generating exceptions and overflows. Clearly,
covering such statements must have a higher priority
than others, therefore this factor needs to be weighted
more than the statement coverage factor.

• number of executions of vulnerable statements: we found
that, together with the vulnerable statement cover-
age the number of executions of vulnerable statements
needs to be considered. In fact, the higher this number
is, the higher the likelihood of generating exceptions
and buffer overflows will be.

Overall, the fitness function, to be maximized, was defined
by Del Grosso et al [6] as:

F (g) = w1 · scov + w2 · log(k) · vcov + w3 · crash (1)

where:

• scov is the statement coverage ratio;

• vcov is the vulnerable statement coverage ratio;

• crash represents the number of buffer overflows de-
tected by the test suite;

• k is the number of executions of vulnerable statements.
To avoid that it excessively dominates other factors, it
is normalized using a logarithm; and

• w1, w2 and w3 are real, positive weights, indicating
the contribution of each factor to the overall fitness
function.

3.3.2 Nesting fitness
Despite the encouraging results, the above fitness function

reflects the double contrasting goals of producing a test suite
with high statement coverage and to whilst detecting buffer
overflows. A heuristic for improving the fitness function
comes from the definition of unconstrained nodes [3] in a
control flow graph. Unconstrained nodes are nodes that do
not dominate nor postdominate any other node. In other
words, to cover an unconstrained node, it is necessary to
properly design a test case that meets the path condition to
such a node.

We also observed that unconstrained nodes often corre-
spond to statements at the maximum nesting level in the
program or procedure under test. Obviously, each test case
covering an unconstrained node will also cover many other
statements and, in particular, vulnerable statements. Fi-
nally, if a vulnerability is detected, then the test data gen-
eration process achieves his goal.

According to the above observations, the fitness function
(1) was modified as follows:

F (g) = w1 · scov + w2 · log(k) · vcov + w3 · nesting (2)

where nesting is the observed maximum nesting level cor-
responding to the current test case.

3.3.3 Buffer boundary fitness
More sophisticated and complex fitness functions can be

conceived, for example, fitness functions that explicitly use
buffer boundaries in the fitness computation. However, since
multiple buffers with, possibly, dynamically allocated sizes
may be involved in each SUT, the complexity of fitness eval-
uation and the information collection process will be in-
creased. At the current stage of the research, we are more
focused on demonstrating the feasibility of the approach
and on evaluating simple fitness functions that can be easily
computed with state–of–the–art tools and technology. Some
problems, such as pointer handling and dynamically defined
buffer sizes will be part of future work.

It can be argued that the above fitness functions (i.e.,
equations (1) and (2)) do not directly account for terms
related to buffer overflow. To further improve the fitness
function, at least for programs where the buffer sizes can be
estimated at compile time, we added to equation (2) a new
term accounting for the distance from the buffer boundaries.
More precisely, this new fitness is defined as:

F (g) = w1 · scov + w2 · log(k) · vcov + (3)

w3 ·nesting + w4 · maxi{minj(Li,j − SBi)}

where SBi is the i-th buffer estimated size and Li,j is the
i-th buffer upper limit that was read or written in the j− th

buffer access. Clearly, the term favors test cases having the
smallest distance from the buffer borders and promotes test
cases accessing memory locations above the buffer sizes.

Weights w1,...,4 are selected using a trial-and-error, iter-
ative procedure, guided by plotting the values of the three
factors and of the fitness function over the GA evolution.

3.3.4 GA parameters
We set-up, according to our experience and to what is

proposed in literature, the other GA parameters. In partic-
ular, we used an elitist GA, with the two best individuals
kept alive across generations. The population is composed
of 70 individuals, and we have analyzed the GA behavior
over 500 generations (while this parameter can vary across
case studies). Finally, the we set the crossover probability
pcross = 0.7 and the mutation probability pmut = 0.01.

3.4 Tool support
As described above, static analysis devoted to identify po-

tentially vulnerable statements was performed using Splint,
while data dependencies and slices were computed using
CodeSurfer.

The GA was implemented using GaLib[22]. The code cov-
erage for C programs was measured using the freely available
coverage tool gcov, distributed with the GNU C compiler2.

To compute the fitness function, our tool executes the in-
strumented source code. The rows of the individual genome
(for the vulnerable coverage fitness) or the individual itself
(for the other two), are the input test cases. Then, the pro-
gram output is used to detect exceptions and segmentation
faults (i.e., the crash factor), while the gcov coverage output
used to compute the scov, vcov and k factors.

2http://www.gnu.org
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4. EMPIRICAL RESULTS
To gain preliminary evidence of the relative performance

of the newly proposed fitness functions, we experimented
with two different case studies: a white noise generator3

and a function contained in the FTP client cmdftp4.
Table 1 reports, for each test case, LOC, cyclomatic com-

plexity and vulnerable LOC (as detected by Splint.

Case LOC Vulnerable Cycl # of

study Stmts compl. Inputs

Whitenoise 331 20 80 7
readline tab
(FTP client) 45 5 18 3

Table 1: Case study metrics

The white noise generator can be considered as somewhat
representative of scientific programs, while the FTP client as
representative of network applications (for which preventing
buffer overflows is very relevant).

4.1 Random search
A preliminary step was conducted to assess whether or not

the fitness function has an influence, if any, on the search
process. To this aim we generated test data starting from a
fixed initial population applying the genetic operators but
disregarding the fitness value in the selection process. The
procedure was repeated several times for both programs,
each time 500 generations were created but no crash was
observed.

A further preliminary experiment was conducted to assess
the effectiveness of pure random test generation. The experi-
ment described above was conceived so that the random test
data generation was initialized with the same values used for
the real GA search, in other words, the same mutation and
crossover operators were applied but fitness values were dis-
regarded. However, it can be argued that creep mutation
can influence results, though no crash was observed. To
avoid possible bias, we did a further preliminary test; we
simply randomly generated numbers and string and gener-
ated values were used as parameter inputs. Again, no buffer
overflow was observed and the computation was stopped
after about 300000 random evaluation for FTP client and
150000 for the white noise generator.

4.2 Searching from a given initial point
This approach aimed at mimicking a situation in which

the knowledge of an expert is used to define the initial search
point. In other words, we assume that a domain expert de-
fines initial input values; the search algorithm starting from
that point in the search space moves toward search space re-
gions were buffer overflow is observed. Data were collected
for the fitness functions described in Section 3, i.e., equations
(1), (2) and (3). Experiments were replicated 10 times and
collected data plotted to gain a first insight subsequently we
applied hypothesis testing to the three fitness functions.

Figure 2 shows the cumulative plot of crashes for the
Whitenoise program; a similar plot was obtained for the
FTP client. Fig. 2 data show a ranking of the three fitness
functions and that the best performance is obtained by the

3http://www.eecs.umich.edu/pelzlpj/whitenoise
4http://freshmeat.net/projects/cmdftp/
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Figure 2: Whitenoise cumulative percentage of

crashes for fixed initial population.

fitness (3). Summary statistics are reported in Table 2.
No substantial difference between means end medians were
observed and thus median is not reported.

Vulnerable Nesting Buffer
Program Coverage Boundary

Fitness (1) Fitness (2) Fitness (3)
Mean Mean Mean

(Std.Dev.) (Std.Dev.) (Std.Dev.)
Whitenoise 125 (36) 120 (31) 67 (14.1)
readline tab
(FTP client) 155 (53) 123 (40) 76.7 (35.47)

Table 2: Search from an initial point defined by an

expert.

Hypothesis testing was performed by means of a modi-
fied t-test comparing the means of two independent samples,
with different variances [20], assuming as the null hypothesis
that the populations have the same mean i.e., no difference
between means exists. Table 2 data supports with strong
evidence (5 % confidence level) that buffer boundary fitness
(3) outperforms both the vulnerable coverage (1) and nest-
ing (2) fitness. Null hypothesis cannot be rejected between
fitness functions (1) and (2). This clearly indicates the ben-
efit of using buffer size and boundary distance to drive the
GA evolution.

1041



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

Cumulative
crash
percentage

Generations

Vulnerable coverage fitness

Nesting fitness

Buffer
boundary
fitness

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Figure 3: FTP client cumulative percentage of

crashes for random initial populations.

4.3 Searching from a random initial
population

This situation corresponds to a scenario where no a-priori
knowledge is available. The initial population is randomly
generated from uniform distributions over the legal value
ranges and string length for numerical and string arguments
respectively.

As in the previous scenario each experiment was repli-
cated 10 times and data were collected. Figure 3 reports
the cumulative percentage of crashes for the FTP client; as
for data plotted in Figure 2, a ranking of fitness functions
is evident. Obtained summary statistics are reported in Ta-
ble 3.

Vulnerable Nesting Buffer
Program Coverage Boundary

Fitness (1) Fitness (2) Fitness (3)
Mean Mean Mean

(Std.Dev.) (Std.Dev.) (Std.Dev.)
Whitenoise 144.7 ( 53.0) 89.9 ( 15.7) 62 ( 10.7)
readline tab
(FTP client) 170.2 (100.4) 84.3 ( 37.8) 36.9 ( 19.6)

Table 3: Search from a random initial population.

Table 3 data supports with strong evidence (5% confi-
dence level) that fitness function (3) outperforms the fitness
functions (1) and (2). Furthermore, at the same confidence
level, the fitness function exploiting the unconstrained node
idea i.e., nesting fitness performs better than the fitness pro-
posed in [6] corresponding to equation (1). This seems to

suggest that the expert wrongly selected the initial point
for the populations of Table 2 or at least that the initial
point challenges fitness (1) and (2). Interestingly, the fitness
(3), on our data set, seems to be able to “escape the trap”,
supporting the idea that it moves the search in a smoother
landscape.

Data are still preliminary and it pays to be cautious in the
interpretation. At the time of writing we are working to in-
crease the number of trials, to evaluate new string crossover
operators and to enlarge our dataset of programs.

5. CONCLUSIONS AND WORK IN
PROGRESS

The proposed approach used a consolidated technique,
i.e., evolutionary testing, with the purpose of detecting pro-
gram crashes or exceptions caused by buffer overflows. The
evolutionary approach has been complemented with exist-
ing static analysis techniques, slicing and data dependencies.
Such techniques contribute to reduce the search space and to
allow the GA converging faster. The proposed fitness func-
tions account for statement coverage, vulnerable statement
coverage, number of executions of vulnerable statements,
maximum reached nesting and distance from the limit of
buffers to drive the evolution toward fitness convergence,
avoiding a flat landscape and thus a random search.

Our preliminary results support the hypothesis that max-
imum reached nesting and distance from the limit of buffers
help to guide the search. In particular, a fitness function
accounting for the distance from buffer boundaries, on our
data set, outperforms fitness functions not using the same
factor.

Work-in-progress is devoted to improve genetic operators
for strings, to augment the number of trials and, in general,
to apply the approach to large-industrial software systems.
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