
End-of-file tests and looping code March 16, 2006

1

EndEnd--ofof--file Tests and Looping file Tests and Looping
SummarySummary

Larry Caretto
Computer Science 106

Computing in Engineering
and Science

March 16, 2006

2

Outline

• Review looping code
• End-of-file tests

– Files as objects
– Functions associated with file names

• .good(), .fail() and .eof()
– Sentinels versus end-of-file functions

• Practice writing loops

3

Review Previous Material on Files

• File input/output
– Have to use #include <fstream> library
– Associate a program file name with an

operating system file name
•ifstream inFile(“input.dat”);

– Use program file name in place of cin
•inFile >> x >> y;

– Want to be able to have computer find end
of large data file

• Can use “sentinel” (data item that is not data) to
mark end of data stream

• Alternative is end-of-file test
4

File Names and Properties

• Program file names are objects
– Object-oriented programming
– Objects have functions that operate on

specific objects (e.g. ifstream inFile)
– Usual format is <object name>.<function>
– For the declaration ifstream inFile the

following functions are applicable
• inFile.good() is true if previous reads have not

found an error or an end of file
• inFile.fail() is true if a read attempt failed
• inFile.eof() is true if an end of file is found

5

Testing for End of File <EOF>
• Consider effects of three separate

functions: .good(), .fail() and .eof()
– .good() is true if a future read statement

may be possible (no error or end of file
found yet)

– .fail() is true if a read statement could not
be completed (some variables not read)

– .eof() is true if an end of file is found
• Where is the eof located?

– Important to understand EOF test
6

Possible <EOF> Locations

Example 1: 12 14 -23.2<EOF>
Example 2: 12 14 -23.2 <EOF>
Example 3: 12 14 -23.2<newline>

<EOF>
• Example 1 file is saved immediately

after the last digit is entered
• Example 2 file has spaces (but no new-

line after the last digit
• Example 3 file has <newline> (and

possible spaces) after last digit

End-of-file tests and looping code March 16, 2006

2

7

Result of in >> x >> y >> z;

Example 1: 12 14 -23.2<EOF>
Example 2: 12 14 -23.2 <EOF>
Example 3: 12 14 -23.2<newline>

<EOF>
Function results for each sample file
Function: in.good() in.fail() in.eof()
Example 1: false false true
Example 2: true false false
Example 3: true false false

8

End of File Test for Sum
int x, sum = 0, n = 0;
inFile >> x
while (!infile.fail())
{

sum += x; // sum = sum + x
n++;
inFile >> x;

}
if (n != 0) double average =

double(sum) / n;

9

End-of-file Exercise

• Read all the data from a file and
determine the maximum, minimum, and
number of data items on the file

• Hints
– Use code similar to that on the last chart
– Read the initial value and set the current

minimum and maximum to that value
– In the loop check each data item against

the current minimum and maximum

10

End of File Exercise Solution
double x, xMin, xMax;
int count = 0;
ifstream inFile (“input.dat”);
inFile >> x;
xMin = x;
xMax = x;
while (!infile.fail())
{

count++;
if (x > xMax)

xMax = x;
else if (x < xMin)

xMin = x;
inFile >> x;

}

11

File Buffering

• Input and output information is placed in
a buffer and transferred from input to
code or code to output later

• Input transfer occurs when user presses
the enter key

• If not all characters are read, the
remaining characters are kept on the
input buffer
– Source of funny input results we saw in

exercise two
12

Testing File Status

• The result of an input operation, say cin
>> x >> y, can be tested
– It is true if there were no errors and no

characters left in the input buffer
– Sample code: if (!(cin >> x))

– Sample code is true if there is an error
condition

– We can use this test to correct any
possible errors, including clearing the input
buffer

End-of-file tests and looping code March 16, 2006

3

13

Keyboard Error Test Loop

do
{ cout << “Enter x: “;

bool goodInput = (cin >> x);
if (!goodInput)
{

cout << “\nInput error\n“;
cin.clear(); // reset error
cin.ignore(80,’\n’); //remove

// bad characters from buffer
}

} while(!goodInput);

14

Looping Summary

• Structures to repeat code statements
• Use condition in while or do while
• Use for loop for count controlled loop

– Can actually have complex conditions in
for loop for C++ (see exercise six)

• Can use combination operators such as
x += 3 and count-- in for loops

• Beware of off-by-one errors in limits use
use of < versus <= (or > versus >=)

15

Trajectory Exercise

• In the first quiz we saw the formulas for a
projectile shot from the ground with a
velocity v0
– Maximum height, hmax = v0

2/g
– Time to maximum height, tmax = v0/g
– Time to return to ground, tfinal = 2 v0/g

• Write the statements necessary to
calculate and print out a table of v0, tmax,
hmax, and tfinal for values of v0 from 1 to 10
m/s (g = 9.807 m/s2)

16

Trajectory Solution

double v0, hMax, tMax, tfinal;

const double g = 9.807;

for (v0 = 1; v0 <= 10.5; v0++) {

hMax = v0 * v0 / g;

tMax = v0 / g;

tFinal = 2 * v0 / g;

cout << setw(4) << v0 << setw(9)

<< hMax << setw(9) << tMax

<< setw(9) << tFinal;

}

17

Another Trajectory Exercise

• The elevation above ground, z, for a
particle shot from the ground at time = 0
with an initial velocity v0 is given by the
following equation z = v0t – gt2/2

• This equation is valid for 0 ≤ t ≤ 2v0/g
• Write the C++ code to calculate and print

the elevation z as a function of time t so
that there are 20 steps between t = 0
(when z = 0) and tmax = 2v0/g for input v0

18

Another Exercise Solution

double v0; const double g = 9.807;

cout << “Enter v0: “;

cin >> v0;

deltaTime = 2 * v0 / g / 20;

for (int i = 0; i <= 20; i++) {

double t = i * deltaTime;

double z = v0 * t - g * t * t / 2;

cout << setw(10) << t << setw(10)

<< z;

}

End-of-file tests and looping code March 16, 2006

4

19

Sentinel Exercise

• Read input data to do calculations until
a “sentinel” value is read

• Sentinel is a value that will never be
used for data
– Example: a program that reads a list of

data on ages from a file can exit if a
negative age is entered

• Write a loop structure to read data from
a file and stop when input is < 0
– Get sum and count to compute average

20

Sentinel Solution

ifstream inFile(“age.dat”);
double age, sum = 0;
int n = 0;
inFile >> age;
while (age >= 0)
{

sum += age;
n++;
inFile >> age;

}
if (n > 0)

cout << “The average age is “
<< sum / n;

21

Another Sentinel Solution
ifstream inFile(“age.dat”);
double age, sum = 0; int n = 0;
do {

inFile >> age;
if (age >= 0) {

sum += age;
n++;

}
}
while (age >= 0)
if (n > 0)

cout << “The average age is “
<< sum / n;

22

Looping Problems

• Midterm (April 7) and April 5 quiz will
have problems like these
– For an equation y = f(x) (e.g., y = x2), print

a table of x and y for a range of x values
– For an equation z = f(x,y) (e.g., KE =

mV2/2), print a table of z for a range of x
values and a range of y values

– Read data from a file or keyboard and take
some actions on each data item until the
user enters a “sentinel” value ending input

23

Another Sample Problem

• Ask a user for input of two numbers
• Compute the sum of all even numbers

in the range input by the user, including
the user input values
– E. g. if the user inputs 6 1 your program

should compute 2 + 4 + 6 = 12
– Watch out for larger number as first input

and input of odd numbers as either start or
finish

24

Solution

int first, last, i, sum = 0;
cin << first << last;
if (first > last)
{

int temp = first;
first = last;
last = temp;

}
if (first % 2 != 0) first++;
for (i = first; i <= last; i += 2)

sum += i;

• Makes sure first
number in sum
is even

• What about last
number?

End-of-file tests and looping code March 16, 2006

5

25

Question about Solution
if (first % 2 != 0) first++;

for (i = first; i <= last; i += 2)

sum += i;

• The first statement assures that the initial
number in the sum is even

• What about the last number?
– If last is even, the i <= last continuation

condition will include it in the sum
– If last is odd the condition will include the

last even number (i <= 7 includes 6, not 8)

